Power Programming
with
SQLWindows:.

Power Programming
with
SQLWindows:

GUPTA.

Rajesh Lalwani

Trademarks

Quest, SQLBase, SQLGateway, SQLRouter, SQLHost and SQLTalk are registered
trademarks of Gupta Corporation. SQL/API, SQLNetwork, SQLConsole, QuickObjects,
Fast Facts, Gupta and the Gupta Powered logo are trademarks of Gupta Corporation.
SQLWindows, is a registered trademark and TeamWindows, ReportWindows and
EditWindows are trademarks exclusively used and licensed by Gupta Corporation.

IBM and IBM PC are registered trademarks of International Business Machines
Corporation. AS/400, Database Manager, DB2, OS/2, Presentation Manager, and Token-
Ring are trademarks of International Business Machines Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation. Windows is
a trademark of Microsoft Corporation.

GIF and Graphics Interchange Format are trademarks of Compuserve, an H&R Block
Company.

Informix is a registered trademark of Informix Software, Inc. INGRES is a trademark of
Ingres Corporation. ORACLE is a registered trademark of Oracle Corporation. SYBASE is
a registered trademark of SYBASE, Inc.

All other brand and product names are trademarks or registered trademarks of their
respective owners.

Copyright

Copyright © 1994 by Gupta Corporation. All rights reserved.
Power Programming with SQLWindows, 20-2235-1004

July 1994

Author: Rajesh Lalwani

Technical Editing: Ben Steverman, Client Server Systems

Additional Copies

Additional copies of this book may be purchased directly from Prentice Hall.
Specify number of copies. Use Title Code 10861-3.

Prentice Hall To order by phone:
PTR Division Call (515) 284-6751, or
Box 11073 FAX to: (515) 284-2607

Des Moines, IA 50381-1073

Quantity Orders: For purchase of more than 30 copies to be mailed to a single address,
please write to Prentice Hall, Corporate Sales Dept., Englewood Cliffs, NJ 07632 for
information on discounts or please FAX to (201) 592-2249.

Dedication
.~~~ """/ |

To my family:

Parents—Lata and Bhagwandas
Brothers—Umesh and Mahesh

My wife, my friend—Sunita

Foreword
[

Power Programming with SQLWindows documents the SQLWindows promise:
quick and powerful application development. Building on the fast start and high
productivity provided by Gupta's new QuickObjects architecture, Power
Programming is the best one-volume tutorial for extending or creating
QuickObjects and building unrivaled robustness with SAL, the SQLWindows
Application Language.

At Gupta, our vision for application development is a world of objects, created
and assembled by teams of developers working together to build a new
generation of easy, flexible, networked applications. Today, SQLWindows 5
starts you on the path to a team-based, object-oriented world with a foundation
of components for the collaborative modeling, construction, assembly,
management and execution of powerful client/server applications. With support
for external CASE tools, a design environment for creating and assembling
QuickObjects, a repository for managing libraries and supporting teams and the
industry's first AGL compiler, only SQLWindows fully equips you for rapid
application development in the coming world of objects.

Power Programming with SQLWindows is the best and fastest way to tap all the
power of SQLWindows 5. It condenses in one book the major programming
principles embedded in the extensive documentation that accompanies the
Starter, Network and Corporate Editions of SQLWindows 5. This volume also
provides the detail documentation for new SQLWindows Solo, Gupta's quickest
route to client/server familiarity. With SQLWindows 5 and Power Programming,
I am confident you'll be building groundbreaking client/server applications as
fast as you can conceive them.

Umang Gupta
President and CEO
Gupta Corporation

Contents
—

Foreword vii
Contents ix
Preface xxi
ACKNOWIEAGIMENES ...oooeieiiisriice it xxiii
1 Introduction 1
About GUPta COTPOTAtION......ueverieireresetireiesisi s 1
SQLWindows 5 and the Gupta Client/Server Suite...................
What's in SQLWINdows 57 ...ccccciniiiiiniiinininiieieeseeecce
The Power to Get Client/Server DONE........cccveveeeverneniniiniiniiiieenee e sssnescesiane
2 Getting Started with SQLWindows 9
Typical SQLWindows ApPLCatiONSoooirriisiiriisisimissii s
TOOL PAlOte ettt eteeeeeteeteessebesse st et e eaestessse e et e e s eeasb e s e e s e s sn e snstnate s seabenesee
Customizer
QUICKODBJECES ...oovvevvivsicseecterieriecacsiassn s

Building Your First SQLWindows Application
About QUICKFRM.APP........cooiiriciiiieicnns
Creating a New AppliCation.......cccovvurimimmminisiiiinnenne
Selecting Window Type and Toolbar Position
Adding @ Databaseooeuumreumimmiimminmrs s
Specifying @ Data SOUICEwweuriumurrimnriireiss s
SQLWindows Creates the Complete QUickFOTM.......ovvviiiiiiiiiiiiiniis 19
Changing Attributes of the Form Window
Taking a Break

Running an Application......

Using QuickObjects.......covvrvecunne.
Creating a New Application
Placing the Data Source on the Form Window ..o 21

Contents

Making the Data Source Invisible.........ccccocurrnirimmiriiiee e
Placing Visualizers on the Form Window ...,
Defining Properties of a QuickObjectccccovrrurunneenn.
Placing Commanders on the Form Window
Running QUICK.APP ...t
Writing Your Own Code
ApPlication OUHNE ..o
Outline Views....................
Application Libraries
Outline Options...........c.cc.....
Debugging an Application...............cuiicenciieeieineenneiseesisseee e seees
AnImation ...
SQLWindows Compilerccccocrvumrnrurrninnronnnn.
Creating an Executable ((EXE) FAlecooouovoviveieieeeeeeeeeeeeeee oo
Creating a Program Item in Program Manager
Distributing Your Application...........coccoececerninnnnes
Release 4.1 ..o
ReIEASE 5.0 ..cvvciiiee et 34

Building a Database Application 37

AbOut DATABASE.APPooiiiiiirinceneiseits e sssss et
ApPPLication ACHONSuuuvviecice ittt
Defining Variablescccccccovincvininnninnn.
SAM_AppStartup........cooceeevereenionnnnnennnns
Displaying the Login Dialog Box
SAM_Create......c.ooueeveeveeeeeeeeereeeeeeeeeens
Using Resources............cccveerereennn.
hWndlItemccocovcivcnrvcrenn e
Connecting to the Database........cc.cccoouerinirrirnnnnn.
SAM_SQIEITOL......c.vceierririaanns
SqlGetRollbackFlag
Displaying Error Text, Reason, and Remedy
Ending the Dialog BOXccucuuiierernmeenrinneiiensissneeeee e
DBP_PRESERVE—Cursor Context Preservation..............co.oeevveneunsrecennnn. 50
ISOIAtiON LOVELS.....eoioeicie e

Keeping Track of Changes
SAM_VAlIAAte co.eveeeeee e

SAM_Validate or SAM_AnyEdit?.............ccoooomimnrirnninnines e, 55

SalPostMsg or SalSendMsg?cccoouvvrvinrierioionnes e, 55

Power Programming with SQLWindows xi

SAM_CLOSE ..vevveteriniieretesesseneeesaeese st ete e e e sesssassassbsssesessrannessassassesessasssssss
Creating Result Set
Preparing (Compiling) a SQL Statement
Executing a SQL Statementccococoeevvenemnerncrnenniiceniisincinins

Fetching First Row
Fetching Next ROWc..cvvveiiiiciineniiiinens
Fetching Previous Row
Fetching the Last Row
Deleting @ RECOI.....uuiumiimrrmiincieriassissssssssssssss s sssenssesssamsesssssassans s sasssssss
Deleting a Record in a Multi-user Environmentcccccoeuev... 66
Inserting a New RecOrd ...ttt
Finding All Children
SalGetFirstChild
SalGetNextChild.......
SalClearField...........ccccoovuunee .
Committing CRANGES.........ouvuurieeriesrinriesiss sy
Inserting a New ReCOIdooivimiiminnimririsieiset st 72
Calculating Next Sequential Number......... .
SQITMMEAIALE ...ttt s 73
Updating an Existing RecOrd.........covueeiemniiiiciiiiininiitctesnsts e 73
Updating a Record in a Multi-User Environmentcc.oiinines 74
Undoing (Discarding) Changescowceuueeuseiisiesissereieninssissesssssaniasnenss 75
Exiting from the Application...... ettt r e 76
Named Transactions........c...coceceerenne. b e et 76
SqlConnectTransaction e bes 77
SqlSharedSet............... BSOSO UOOROON 77
SqlSharedAcquire....... e s e e es 77
SQISHATEAREIEASEvuvrveieerisniinssrnsss st s 78

4 Object-Oriented Programming 79

Software "ManUfaCtULE'cccoiiiiriiniiirees ettt
Class — Base Component of OOP.........ccoveieueirinenne
Designing Frequently Used Classes

Auto Entry Data Field Class—clstAutoEntry .. 80
SalGetMaxDataLength ...t
Instance Variable—nMaxLength..........cccoooinininieneinineinenns
SAM_ANYEit.....ooiririiieieeiriees et
SalStrLength and SalStrGetBufferLength
MYVaALUE ...ttt

xii Contents

SAM_SEFOCUS «..veverevrereeeeeeeeteeeee et eee e eee e e eseresesesse s ee s e 83

Listing a Data Field Class in the Tool Palettecccoeevevrreereennaneee. 83

Data Field Class of Data Type Number—clsDfNumber 84

Defining New Classes from Previously Defined Classes

Deriving New Classes from Multiple Base Classes..........cc..coc.oovverirvveeeereennrnnn.. 85

Parts and Assembly Case Study—Browse SCreenccoowemvveeereeenneeeesrvveensnnnn. 86
Designing Partscc.oecueceneroncenneeccrnerneeessesssersee oo

Sql Handle Class—clsSqlHandle

Local Error Processing—When SqlError Statement

Sql Handle Class for SELECT statements—clsSqlHandleSelect

Form Window Class for Browse Screens—clsFrmBrowse.........................

hWndForm...................

SAM_Destroy...............

Assembly Line.........ccoocvnerenrnrnnnnnnnn.

Late Binding versus Early Binding.......

Corporate Standards for User Interface

Easy Maintenance of Code........cccoocnruunnne.

Hiding Implementation Details...................

5 MDI Windows

AbOUt MDI WINAOWSoeceeemrereeiiitrecinsinsie e eesse s eseseeseeseneene

Managing Phone Numbers and Addresses.........coocoeveerernriennrionnsiinsrinseerens

Structure of PHAD Table ..o

Architecture of an MDI Window Application
Architecture of PHAD.APP ..o
Application Global Declarations.........ccocoevvvevuninnnen.

External FUNCHONSc.coeuevcuninininreiniesese e

Dynamic Link Library (DLL)

When to Use DLLs...................

Declaring External Functions

Calling External Functionscc..cco.ovvvereenevevsroeeeenne.
User Constants—Defining Programmer Messages.......... s
Named Menus

clsDfResetDirty and cIsSMIReSetDIrtycooeeureieneeiinsivenrsisensssennens 127
clsSqlHandleSelectPhAd...........ccccccumreemerenreiiriinneiee e 127

Power Programming with SQLWindows xiii

clsSQIHANAIEPRAM ..ot
Application ACHONScovovveiieirirriresicinieiecien et
Dialog Box to Report a SQL Error....
Radio BULLONIS ...ttt sre s sasass st s
MDI WINAOW ..ottt
SalSendMsgToChildren...................
PBZOOMIN ..o
Who has the focus?.........ccooeenrnnnenc.
MIDEIMONICS ..ottt
Manipulating a Child Window’s Visibility State
SalGetWindowsState...........ccoooveveernrerrininininnsiiseceenes
SalBringWindowToTopcoeieiiieiiciicians
ShoWWINdOW........coviimiiiiiiccrceiie e
Index Push Buttons
PM_IndexLetter.................

SAM_Close
Functions.........
AccessSINg SYStemM MENUooovuiiiiiiei e e
GetSystemMenu
FEnableMenultem
FOITN WINAOW ..ottt see et ee e s st seteesabesasesasesanasannsssnaes
SAM_Destroy
Menu Item—Enabled When? ..ot ceecsnene s snenas 144
6 Table Windows 159
ADOUL TaADIe WINAOWS ..ottt e e s e sttt e s rsae e sarassbsssabsssresanees
Types of Table Windows
LINES POI ROW ..ot ieeee et cev vt aaeebe et s ebeemeesrstese e sssssssenbasbbessesaaestas
ALOW ROW SIZING....ooviieririmieriiiiis ettt enennes 161
Word Wrap et et et e b et saa st nees 161
COll TYPE ..ot s s 161
Table WINAOW CACE......c oot eeeeeeteee e ee e s e e e bt esseaeeseeneeneereeneesesaenaes 161
PHAD.APP—the Table WIndOWcccoccviiivivrieierieeeeieiee et seestesreessessaessesseesssanne 164
Defining the Table WINAOWcoooucrriniiirinecseiicieresiiss s 164
InitializatioN—ON SAM_CIeate..........covvrierrereereineneeseese et siieieeesssesneenns 166
Populating the Table Window—SalTblPopulate..........ccooovunrvnnmiinriinnnins 167
SAITBIPOPUIALE «....cvorvceecmniiiiisiiriae i st 167
Methods to Populate a Table Windowc..ovveerrcnieecieincenincnncenenn, 168
Table Window FIagscocorriiiniiiini st 169

Browsing Through ROWScoviiiieiieitieiccncens e, 171

xiv Contents

SAITDISEtROW.......o.coveieecieiieeteeasenseeascessensssess s
Focus Row............
Selected Row
Row Flagscccccueuuee.
Context Row
SalTblFetchRow
SAM_ClicK.....cooviiicreneeeeeceennne
SAM_RowHeaderClick..........ccocceu....
Row Validation—SAM_RowValidate...... .
Searching among Table Window Rows..........
Binary Search..........cocovniuiiiiccninenn
SalStrUpperX .
Using Column Names as Variables - Setting Context.....
SalTblQUEryFOCUS........ovuvcemcimceneerceireeseineeree s
SalTblSetContext..........cccoeveereeeennec.
Maintaining Records Using a Table Window
Application Global Declarations.....................
Table Window tbIMainccoeeeeveeneenncencenniennns
How to Check If There are Modified Rows........
SalTBIANYROWS ..ot
Populating the Table Windowcccccmeunecenrenmeeinsiensssssions s
Marking a Row for Deletion..............ccccceuereemneioerenneennseesessses oo
SalTblSetFlags AnyRows
Inserting @ New ROW ..ot e
SalTBIINSEIEROW........oocoviivecerimnceeenrneesecaneeeeessesses s sssssts e sss e

Applying Changes—Updating the Database
Order of DELETE, INSERT, and UPDATE Operations
SalTblDoDeletes
SalTblDolnserts........
SalTblDoUpdates

Discarding Changes...........cccocecunevcrcrernnnnn.

Disconnecting from the Database

7 Generating Reports

The Process of Generating a REPOIt............ccccoueuceereenerisnnricinnnises s
Designing a Report Template for an Invoice
Creating a New Template............ccooecveemereniniiiie e
Defining INPut TEmScovouiveeriiceeeceeeniiee e
Defining a Break GIOUPcviveumeeeerneinriaesiniseec e oo

Power Programming with SQLWindows xv

INPUE TOALS ..coovimiritreereites ettt
Defining ItemNum Input Total.....

Restart Event
Pre-ProCesscccucuinemnemurmmninssssssssssismsesesiicssine
Defining TotalAmount Input Total
Defining a Formula........ccooovvonrncecicinncnnns
Data Items........ccoemeernriierncinnnenee
FUNCHONSoovevreineisnntiieenns
OPperators.........cccocoeurrverneiinieecirincnnes
Formula Name
The Tool Palette............
Selector Tool........
Auto Selector
Field Tool...........
Picture Tool
Background Text TOOL......ccvvmrimieunerinerseniseicisinsissss s
BOX TOOL ..ttt
Line Tool ...cccveeieieieiniinnne
Page Header ..o
Break Group Header for ORDER_NUMcococvvvirinnnn.
Detail BlOCK.....c.cuecmeeriimiiiireiencirsissesssinenenes
Alternate Background........ccocovvcniieiace .
Break Group Footer for ORDER_NUMcc.ccccuimiiimmimimmnninniinsisiisessenees 211
Printing or Displaying @ REPOTtc..ceuuiuimmmiiiniiiiiit e
Displaying the Report Dialog Box .
Populating Combo Boxes of the Report Dialog BoXccccuuuiiinniinisninncnes 213
COMBO BOX ...evvrenceeenceeeeneteeeniectssssssnsas s ssss s ssseises et essststusassss et sans s 214
SalListPopulate
SAM_CTCK covrveveetereereeeieereemetereereaiatse e e sss s st st csb s ebs s e snses
Launching the Report
SalReportPrint
SALREPOTEVIEW ...ovveveiieseisisiissississnnsse oo s st st
Feeding Data to the Report — One Row ata Time ..o 220
SAM_REPOItSLArtovvrevreererisinietseiecseeseines
SAM_ReportFetchInit
SAM_RepOortFinish ...
Cros5 TAbULAr REPOTt.......ocuiviimciiirnmtsisnsissis ittt

xvi Contents

Defining INPUt TLEIMSc.ooouuieecenceiececinneeisnes i ssessons 226

Defining Input Cross Tab...........ccccc.occuerrmmecernerenmnesins e seesseenees
Defining Rows................
Defining Columns
Defining Cell Value..............ccoocouuiiucrieneerenrennnsiiens e
Defining Statisticsccocvreereuenrennne.
Defining Summary Statistics
Naming the Cross Tab and Specifying the Restart Event 230

Placing the Cross Tab in the Report Template................................

Fine Tuning Tabs and Choosing Landscape Orientation

Feeding Data to the REPOTt........c.coccuvviermmeemniiirireseiesees e eseesseessenen

Mailing Labelscccc.cuverurernrenmeerinesenee e eeeeen

Defining Input Itemscccocrvuercereunrrennn.
Defining Number of Columns........cc.coeoueereunnnvnn. .
Placing Input Items and Formulas in Felds..............
Strlength ..o,
SEEIFF oot
Supressing Blank Linesc.c.coccnveeneenneinnirrnrrennins
Specifying Minimum Height for the Detail Block

Printing Multiple Reports in a Batch......cccco.ovoreeeiueiuerieicccne
CRECK BOX.uritviiiiiiectiiiitcise ittt
Number of Copies, All or Ranges of Pages

SalDisableWindow AndLabel.............cccccomummreinmmminnniennsneserecssse s,
SalEnableWindowAndLabel..............ccccoouiimmimnneennnnineisneeee oo
Launching the Next Report
Handling Report Messages

8 Creating Your Own QuickObjects

Creating Your Own QUICKOBJECES «....ceueveererireneiece e ieesesesssesee e eseseone
What is a QuickObject?cccovvrrrrennnneee.
Named PrOPertiesocuviinecvcineonninnensse s
Process of Creating a QuickObject

Defining a QuickObject Class
Custom Interface Applications
QCKPROP.APP - Custom Interface Application for cMicroHelp.... 250
Using the QuickObject EdItOrc..ovvureureeeiiieiirie oo 253
APPlication NAIMeccouuieeiineieieeniese e
Dialog NAMe ..o

Power Programming with SQLWindows xvii

CUSOMUZET TEXE ..eucueirereieiairieniieierens sttt sss s s 254

Show Data Sources on Palette?.............coovmeniennnnniiiiniscens 254

Using cMicroHelp QuickObject in an Application.........coeveeevicesiiniciieneeennss 255
Deriving New QuickObjects from Existing Ones..........cocoemmnmisisncnnncriccienennes 255

SalSendClassMessageNaMEd............cocureriermrirnermeineemenmccmisisnns e 256

9 Advanced Topics

Pictures and OLE (Object Linking and Embedding).........cocoorvimimiinnsiiseineniinss
Graphic€ IMagescoueveimieriierieirci et
File Storage
Picture Transparent COlOTcomvureireunerncmniiniiniinniieiieiniens
PictUre Fituc..ccveeeccciciiieirinie ettt
Tile 0 PArentcccueuicueiinrinineesceessi sttt

Embedding
Client and Server Applications.........ccooeeuveieccmrmriseniiimniiss e
OLE Verbs

Building an OLE Application—ScrapBookKoocuurviiiiienniriiiiiniceniens
Structure of the SCRAPBOOK Table.........cccoocoveiniciniiiiinnnnns
Form Window—frmMainc.ccoocvennnninniinns
Resetting Contents of @ Picture........ccoocoveeveniviniiniennens

SAIPICCIEAT ...voveveeecceiiic et sr s e 270
Paste—Embedding an OLE Object........covvniuerieiiiisiiiminininsiseiseee 270

SAlEQICANPASE. ... cveceeecenierereceeiicereirrrarese st 270

SAlEItPaSte.eoveeveeeeerceeceeict et st 270
Paste Link—Pasting an OLE LinKccooournnecicmnmminiinins 271

SalEdItCanPasteLinkccccoveirirmimmriirririiesieitee s 271

SalEditPasteLink..............

Managing OLE Links........

SalOLEAnyLinked

SAlOLELINKPTOPEIHES ..vucvvvvrvsrsisiesreescisennss e ssses s s 273
Performing Object Related Actions (OLE Verbs)ccoccovvommrveennnininnnnne. 274
Inserting a New OLE Object 274

SalEditCanInSertODJECt.........vumrvvrriisierinsis st

SalEAitINSEIEODJECt ... vevrevriritseri st
Creating a Popup Menu at Runtime

SalTrackPOPUPMEINUooviuiiiriatireieini s

xviii Contents

Detecting Changes to an OLE Objectow.curvvrnrreeooeeeseeeeceeseenennnn.
SalOLEANYACtIVEcovemecrerrnrrrsnirrrne,
Field Edit Flag..........cccccosverneernmnnnn.
SalQueryEditFlag..................
SalSetEditField..........cocccoruemrrnrrunnennne.
Fetching an OLE Object from a Database
SalPicSetStringccveeeemeereeieenrirnirnnran,
SalPicGetDescriptioncveereererroeennanee.
Inserting or Updating an OLE Object in a Database.................
SalPicGetStringcccorevumeeenneenirennieeeieseeeess oo,
Compressing a String before Storing in a Database....
SalStrCompress...........cccoovnrermenrnrinnieieereeee e,
SalStrUNCOMPIESSooceemreereeneeeneinsiirenreise s
Drag and DIOP.......coc..civuiieecceereinneieneesiensees e es s
Dropping Files from the File Manager............ccoov...ooevvvevovvoeeereeennn,
SalDropFilesAcceptFiles
SAM_DIOPFILES......o..ooeoviecctcine e ee s
SalDropFleSQUETYFIIES ..o
Drag and Drop between Application Windows
Source Window Messages
Target Window MeSSagesoceweerummririnireeceeesoeeseeeeeosseeeeeeeessess s
Drag and Drop Related Functions
VBX CONLTOLS ...
Placing a VBX Control..........ccunc.n....
VBX Interface

Properties
VBX-Related SAL Functions
Team Programming
TeamWINAOWS ..ot e
REPOSIHOTY ..ot
PrOJECt eovveviiictecr e,
TeamWindows Users
Modules......................
Module Types
Defining New Module Types
Module Storage Methodscc.uueereereeieeinnrriieeeeeseeeeee e
Checking Out and Checking In a Module
Extracting @ Modulecoccooeeimrnninnice e
Module RelationShipscccooeeeemereeimmmreirenieie e

Power Programming with SQLWindows xix

TeamWindows Development Levels........oc.ocvccuiiiiinnniscicinns 302
Templates.........ccccoemunnenne
Impact Analysis

Glossary

Index 319

Preface

SQLWindowrs, first introduced in 1988, is the most widely installed client/server
application development system for the Microsoft Windows environment. With
the introduction of SQLWindows 5 and QuickObjects, it is clear that
SQLWindows has a promising future in the years to come.

SQLWindows is an easy-to-use, yet powerful, 4GL tool to write client/server
applications. On one hand, it has features such as QuickObjects that make it
extremely easy to write a fully functional client/server application without
writing a single line of code or with minimal programming. On the other hand,
SQLWindows Application Language, SAL, is like languages such as C or C++
where the complexity of the applications developed is only limited by the
creativity of the programmer.

SQLWindows provides a very rich environment for application development. It
provides many ways to build applications and solve programming problems.
The purpose of this book is to provide examples of some of the better ways to
build applications using SQLWindows. It is my intention to present a quick and
an easy way to learn SQLWindows programming — through generous use of real-
life examples. This book explains:

¢ How to write a complete database application without writing a single line
of code — using QuickObjects.

¢ How to build a database application from scratch — browsing records of a
table, modifying or deleting an existing record, inserting a new record, and
generating sequential numbers to be used as identifiers. An introduction to
named transactions — new in SQLWindows 5.

Working in a multi-user environment.

¢ Object-oriented programming. How to extend existing QuickObjects. How to
create your own QuickObjects.

¢ MDI Windows, and Table Windows. I build a complete MDI application
PHAD to manage phone numbers, addresses, and important dates.

¢ Generating reports — invoices, cross-tabular reports, and mailing labels.
Printing reports in a batch.

xxi

xxii Preface

¢ Advanced topics — Object Linking and Embedding (OLE), Drag and Drop,
Visual Basic (VBX) Controls, and Team Programming.

I will be satisfied if reading this book makes you a more confident and efficient
SQLWindows programmer. I will feel happier if it leaves you with a burning
curiosity to explore the full potential of SQLWindows by looking at the extensive
online help and reference manuals that come with SQLWindows.

The example applications are developed for SQLWindows 5, but most of the
concepts and techniques also apply to prior versions such as SQLWindows 4.1.

It is assumed that you already know how to use Microsoft Windows. It will help
if you have already seen or used some database applications, particularly ones
with a graphical user interface. While not necessary, it will be easier for you to
learn SQLWindows programming if you have done some event-driven
programming such as for Microsoft Windows, Macintosh, or X-Windows (Motif).
Finally, I assume some knowledge of relational databases, and SQL.

Throughout the book, I explain concepts by giving complete examples.
Secondary concepts and new terms are explained when they are used for the first
time. My goal is not only to explain the features of SQLWindows, but also to
show you how they fit together. You will find generous use of listings of actual
code.

While this approach works very well for a beginning programmer, it presents
some challenges when later used as a reference by the same programmer or by
an experienced programmer. To help solve this problem, I provide an extensive
Index at the end. If you want to refer to a SQLWindows message or function, it
may not be easy to find it using the table of contents in the beginning of the book.
But looking at the Index will immediately point you to the appropriate page.
There may be several pages listed for each entry in the Index. I have made every
effort to list, in bold, the page number where you should go first.

I have organized the book and its chapters loosely around classes of applications.
For example, Chapter 2 shows you how you can quickly create fully functional
applications using QuickForms and QuickObjects. Before you can extend the
functionality of the existing QuickObjects or create your own QuickObjects, you
need to learn some fundamental concepts of SQLWindows programming such as
building a database application (Chapter 3), object-oriented programming
(Chapter 4), MDI windows (Chapter 5), Table Windows (Chapter 6), and

Power Programming with SQLWindows xxiii

generating reports (Chapter 7). Chapter 8 comes back to QuickObjects and shows
you how you can create your own QuickObjects or modify the existing ones.
Finally, Chapter 9 introduces some advanced topics such as OLE, drag and drop,
VBX controls, and team programming.

I have a few comments about how I wrote this book. I started writing this book
with Microsoft Word for Windows 2.0. It was clear very quickly that Word 2.0
did not have the features to handle such a big project. Word 6.0 arrived in time
for this book and rescued me. Screen shots were captured using DoDOT from
Halcyon Software. I gave final touches to the .BMP and .GIF images using Paint
Shop Pro from JASC, Inc. IconLib (Fax: 408/446-2563) provided the icons used
on toolbar push buttons.

Acknowledgments

A book such as this cannot come about without help and encouragement from
some very special people. I offer my sincere thanks to the following:

¢ Pat Pekary, Karen Gettman, Bruna Byrne, and Ann Stein from my Hewlett-
Packard days for the encouragement they provided for a book on POSIX that
I was planning to write for the Hewlett-Packard Press. (For the curious
minds, my interests changed and I joined Gupta Corporation.)

¢ Brett Bartow and Paul Becker with Prentice Hall for showing confidence in
me and working with me throughout the project to ensure its success.

¢ Gupta Corporation for providing the necessary resources to ensure the
successful completion of this project in a timely manner. I would like to
thank Candace Sestric, Clark Catelain, Earl Stahl, Rich Heaps, Kevin
Johnson, and Umang Gupta for creating the necessary framework for this
project.

¢ Denise Tindell at Gupta Corporation for managing the day-to-day matters of
this project. She helped me schedule the project (and made sure I met the
deadlines!). She removed the obstacles and provided access to the resources
in different organizations at Gupta.

¢ Ben Steverman of Client Server Systems for reviewing the book and example
applications for technical accuracy.

¢ Earl Stahl for reviewing the book and making sure that the book meets
Gupta standards.

xxiv Preface

Umang Gupta for sharing his thoughts with us in the Foreword.

Phil Ressler, Vik Chaudhary, and Audrey Kalman for help with the product
issues.

¢ K. Smokey Cormier, Denise Tindell, Susan Wilson, and Patricia Wright for
working on my language and grammar.

¢ All the people who worked on the technical reference manuals, online help,
and release notes of SQLWindows — Bruce Ring, Susan Wilson, and Patricia
Wright, K. Smokey Cormier, and Denise Tindell. This book uses some
material originally written by them.

¢ Mahesh Lalwani for pointing out the unnecessary index entries and
suggesting additional ones.

¢ Managers in my organization — Susan Abraham, Bob Bramley, Tim Conway,
Taraneh Derak, Robin Moss, and Candace Sestric for letting me work on this
project.

¢ My colleagues—Shailesh Bhandari, Jim Cable, Mahesh Lalwani, Suman
Kamal, Keith Remmes, Charity Silkebakken, Sanjay Tandan, Kuntal Thakore,
and Steve Whitt. I hope they all missed me when I was away working on the
book!

¢ Family and friends—Leela and Ramchand Lalwani, Kaushalya and Lalchand
Lalwani, Bhagwanti and Amar Lilani, Lakshmi and Govind Sadhwani, Shelu
and Ratan Bhatia, Meena and Mohan Rijhwani, Rupinder and Charanjit
Singh, Sujata and Sunil Bopardikar, Girija and Sridhar Dasu, Lakshmi and
Ramana Yerneni, and Jyoti and Raghu Dwarakanath; Sunita’s family—Dr. N.
Ram Khetpal, Neelam and Manohar Mandhani, Salochna and Shivaji
Mandhan, Neetu and Rajendra Khetpal, and Beena and Deepak Kataria.
They all help me keep my sanity and constantly remind me that there are
pleasures other than computers that life has to offer!

Cupertino, California Rajesh Lalwani
July 30, 1994

1

Introduction

[

Gupta’s SQLWindows provides both an easy, quick start and the power to finish
industrial-strength applications. The product's roots and evolution, and that of
Gupta Corporation itself, have paralleled—and in some cases anticipated—
important market developments. This introduction offers a brief overview of
Gupta Corporation, its products, and where SQLWindows fits in the
client/server development picture.

About Gupta Corporation

Nearly a decade before corporations began widely adopting client/server
architecture, Gupta Corporation laid the foundation for PC participation in a
networked, client/server world. The company's founders understood that
corporations would require a new computing architecture to meet competitive
demands and achieve greater organizational flexibility. This new architecture
had to provide broader and quicker access to corporate information, an easy-to-
use interface, and tools to produce powerful and flexible applications.

Through the 1980s, Gupta Corporation brought this vision to the corporate
computing world. In 1986, the company introduced SQLBase, the first database
server for PC networks. Two years later, long before it was clear that Microsoft
Windows would become a corporate standard, Gupta introduced SQLWindows,
the first Windows-based client/server development system.

SQLWindows 5 and the Gupta Client/Server Suite

Leading with SQLWindows 5, Gupta Corporation provides a family of
client/server development products known as the Gupta Client/Server Suite. In
addition to SQLWindows and SQLBase, these products include enterprise
connectivity software that brings centralized computing resources to the desktop.
Gupta's Tools Integration for the Enterprise (TIE) strategy allows the easy
integration of independently developed technologies such as CASE tools and
groupware into applications created with Gupta products.

Introduction Chapter 1

The Gupta Client/Server Suite is intended for designing and deploying
client/server applications that combine the robust power of SQL databases with
the cost-effectiveness of LANs and the ease-of-use of graphical PCs. Developers
can choose components to meet their specific needs. The Gupta Client/Server
Suite is comprised of:

SQLWindows—A quick and powerful object-oriented system for developing
client/server applications for Microsoft Windows and other graphical user
interface (GUI) platforms. The new QuickObjects and QuickForms
architecture make SQLWindows easy to use. SQLWindows' sophisticated
4GL, 4GL-to-C compiler, and true object-oriented programming give
programmers the power to get the most demanding client/server
applications done.

Quest Reporter and Quest—Quest Reporter is a graphical data access, query and
reporting tool for end users that provides an easy, intuitive interface. Quest
provides the same powerful data access and reporting as Quest Reporter and
provides advanced users the ability to create custom forms, create and
manage SQL tables, and work with database definitions.

SQLBase—A fully functional, multiuser relational database server available
on several operating system platforms, including DOS, Microsoft Windows,
0S/2, UNIX and NetWare. SQLTalk is an interactive user interface for
SQLBase that allows you to enter SQL commands along with SQLTalk's own
commands to manage a relational database. SQLTalk for Windows, popularly
known as WinTalk, is similar to SQLTalk but runs under Microsoft Windows
and has a graphical user interface for certain operations. WinTalk can also be
used with other non-SQLBase databases.

SQLConsole—A database administration and monitoring tool for SQLBase
servers.

SQLNetwork—A family of products providing connectivity to IBM DB2,
Oracle, Sybase and Microsoft SQL Server, Ingres, Informix, OS/2 Database
Manager, IBM AS/400, Cincom Supra, HP Allbase/SQL, and many other
desktop and SQL databases through ODBC.

Power Programming with SQLWindows 3

What's in SQLWindows 5?

SQLWindows is a quick and powerful object-oriented client/server application
development system for Microsoft Windows and other GUI platforms.
Programmers can write GUI applications with the point-and-click simplicity of
Microsoft Windows, while taking advantage of industry-standard SQL to
interact with any SQL database.

SQLWindows 5, the new release of SQLWindows, proves that a powerful
client/server development system can also be easy to learn. The SQLWindows
product line scales from the single developer writing standalone applications for
desktop deployment to teams of developers working on complex multiuser
applications accessing enterprise-wide data sources. The SQLWindows product
line includes:

Corporate | Network | Starter | SQLWindows
Solo

SQLWindows with v v v v
QuickObjects
Quest data management v v v v
tool
SQLBase development v v v v
engine'
Free deployment of 5 MB v
SQLBase engine
ODBC connectivity to v v v v
personal databases
QuickObjects for e-mail v v v v
systems

' SQLBase development engine in Solo Edition stores up to 5 MB.

4 Introduction Chapter 1

Corporate | Network | Starter | SQLWindows

Solo
QuickObjects for Lotus v v v
Notes
Visual Toolchest class v v v
library
ODBC connectivity to v v v
SQL databases
SQLRouters for Oracle, v v v

SQL Server, Informix,
Ingres, and AS/400—for
development

SQLRouters for Oracle, v v
SQL Server, Informix,
Ingres, and AS/400—for
deployment

SQLWindows Compiler

SQLConsole application
tuning facility

TeamWindows, Gupta v
Open Repository

Interface to CASE tools v
via Gupta TIE

With Gupta SQLWindows Solo, developers can build single-user applications for
desktop deployment. It's a great way to get started with the new world of
client/server development. When you need additional departmental and
enterprise connectivity options, higher performance, and team programming
support, you can move your SQLWindows Solo applications up to the Starter,
Network, or Corporate editions of SQLWindows without modification.

Power Programming with SQLWindows

Here are the main features of SQLWindows:

Ease of Use with QuickObjects—QuickObjects are powerful, prebuilt
components you can use to build applications without knowing SQL or
writing a single line of code. You don't need to be an experienced
client/server or object-oriented programmer to use the new QuickObject
architecture. In the next chapter, you design a complete application using
QuickObjects. Later, you'll learn how to modify existing QuickObjects and
create your own, using SAL (SQLWindows Application Language).

SQUWIndows QUICKERM.APE [Main) B RE
2l Tool Palette
o cQuickLabel: Address Lest r‘“‘““‘““_“‘r
¢ cQuickField: dfADDRESS =
o ' cQuickLabel: City [F]+ 1]]
o cQuickField: dfCITY S T
o cQuickLabel: Company Ild b On SAM_Create |
¢ cOuickField: dfCOMPANY_ On SAM_DDE_Clien€Execute £
© cQuickLabel: Company Na On SAM_DDE_ClientRequest | .
o © cQuickField: dfCONPANY N[l & OnSaM_00E Dechange il Options Bar
N g On SAM_Destroy
o : cOuickLabel: Country On S4
o cOuickField: dFCOUNTRY o
© - cQuickLabel: Exclusive !
¢ cQuickField: dfEXCLUSIVI ’
o cQuickLabel: Fax =
& cQuickField: dfFAX TORETAL, CUST] m
© cQuickLabel: Payment o = Te]
e cOuickField: dfPAYMENT ||loavmenT freed
o - cQuickLabel: Phone
¢ cQuickField: dfPHONE .
o - cOuicklLakel: State : = | Outline (code)
¢ cOuickField: dfSTATE Wit
+ Message Actions form { Dielog
Table Quest
Add Next Level
Figure 1.1 A SQLWindows session displaying outline (code), options bar,

and tool palette. A QuickObject—cQuickField—is currently
selected in the tool palette. This QuickObject is linked with the
STATE column of the tbIRETAIL_CUSTOMER table.

Design Window—A visual programming environment with a rich palette of
tools for designing application screens. You can simply point and click to
place an object such as a push button on a form and later use drag-and-drop
to move or resize it. The tool palette contains tools to create a form or MDI
(Multiple Document Interface) window, QuickObjects, data fields, multi-line

Introduction Chapter 1

text fields, push buttons, list boxes, and more. You can even place a custom
control or a Visual Basic (VBX) Control using this tool palette.

The Design Window also provides a convenient Customizer for changing the
attributes of an object. For example, you can change a data field from right-
justified to left-justified or specify the name of a .BMP file to place a picture
on a push button or a picture.

cQuickField

Object Name
Visble

Location and Size
Data Type

Max Data Length
Editable

Border

Justify

Format

Input Mask
Country
Background Color
Test Color

Font Name

Fort Size

Font Enhancement

Quick Field...
Edit Actions

vvvivev|lvvwvwvvivevlvw|w

Figure 1.2 Customizer.

Application Outline—A readable, collapsible outline that provides a complete
overall view of the application. When you add or modify application objects
in the Design Window, the application outline is automatically updated. It
lets you copy, cut, and paste pieces of code as well as visual objects such
forms or dialog boxes.

SQLWindows Application Language (SAL)—While QuickObjects let you build a
complete application without writing a single line of code, complex
client/server applications usually demand that you write code. SAL is a full-
featured fourth-generation language (4GL). It is object-oriented, yet doesn't
require you to use object-oriented features. SAL provides many useful
functions, as you will see later in the book. You can also create your own
functions and, if you wish, store them in a library. You can even call a
Microsoft Windows API function or use a function from a Dynamic Link
Library (DLL) created by someone else.

Power Programming with SQLWindows 7

o Easy Object-Orientation—QuickObjects give you immediate productivity
while laying the groundwork for object-oriented programming (OOP) with
SAL. Because QuickObjects are created on the object-oriented foundation of
SQLWindows, you can use OOP techniques such as inheritance to extend the
power of QuickObjects when you're ready. You can decide to use additional
OOP features as you feel comfortable and as you see their value. This book
discusses the OOP features of SQLWindows in Chapter 4.

o Outline Options Bar—This wizard-like tool is the single most useful aid for
programmers writing application code. Depending on where you are in the
application code, the options bar presents you with valid choices for SAL
statements, available functions, variables, and constants. Point to what you
want, click, and the element is automatically added to your application code.
For functions, the options bar displays the data types of all the parameters to
assist you. This applies not only to the standard SQLWindows functions but
also to the functions that you have defined earlier.

e Debugger - The SQLWindows debugger provides multiple breakpoints,
single-stepping, watch values of variables, and code animation.

e ReportWindows—SQLWindows’ integrated, full-featured graphical report
designer can produce tabular, cross-tab and control-break reports. Reports
created with ReportWindows are fully compatible with reports created with
Quest.

e SQLWindows Compiler—The SQLWindows Compiler generates C code for
portions of your application when you need bare-bones performance.

e Team Programming—If you are developing applications in a team
environment where multiple programmers work on different pieces of the
code, consider using the TeamWindows feature available in the Corporate
Edition of SQLWindows. TeamWindows manages the individual pieces of
code, called modules. A module can be anything—a SQLWindows
application, SQLWindows library, a .BMP file, or even a Microsoft Word for
Windows document. TeamWindows provides a repository for source code
and version control. The check-in/check-out facility enables team members
to share and modify modules.

TeamWindows also maintains a central data dictionary of database
structural information, including table and column names and primary and

8 Introduction Chapter 1

foreign-key relationships. This data can be imported from existing upper-
CASE tools such as Popkin System Architect or LBMS Systems Engineer.

The Power to Get Client/Server Done

The new SQLWindows QuickObject architecture gives any developer a quick
start with client/server. To extend existing QuickObjects, write your own
QuickObjects, or gain more control of your business application, you need to
write code. This power programming guide is your easiest way to unlock the
power of SAL and discover the power to get client/server done with Gupta.

2
Getting Started with SQLWindows

The purpose of this chapter is to make you familiar with SQLWindows as
quickly as possible. By the end of this chapter, you will know:

¢ What applications are typically developed using SQLWindows.

¢ Basic components of SQLWindows and how to use them. Examples of
SQLWindows components are tool palette, customizer, application outline,
outline options bar (or box), and full-featured debugger.

s How to write a fully functional database application using QuickObjects
without writing a single line of code. Using such an application, a user can
browse through records, insert new records, delete or modify existing
records, and after changes have been made, either discard or apply these
changes to the database.

¢ How to run an application.
¢ How to create an executable (.EXE file) from an application.

¢ How to distribute and deploy an executable created from an application.

Typical SQLWindows Applications

SQLWindows is an easy-to-use, yet powerful 4GL tool to write client/server
applications. On one hand, it has features such as QuickObjects which make it
extremely easy to write an application without writing a single line of code or
with minimal programming. On the other hand, SQLWindows is like languages
such as C or C++ where the complexity of the applications developed is only
limited by the creativity of the programmer.

For most situations, SQLWindows provides a rich set of functions, and messages
but if there is a need, a programmer can use functions from a DLL (Dynamic
Link Library) including those provided by Microsoft Windows, process

10 Getting Started with SQLWindows Chapter 2

Microsoft Windows Messages such as WM_CHAR, and use custom controls and
Visual Basic (VBX) controls in SQLWindows applications.

SQLWindows is most often used to write GUI (Graphical User Interface)
applications in a client/server environment. A typical application accesses data
on a database server that supports SQL. However, SQLWindows can be used to
write applications for various mail systems such as Microsoft Mail, and Lotus
cc:Mail, and unstructured databases such Lotus Notes.

SQLWindows is used to write decision support applications as well as mission-
critical applications. Some examples of business applications developed using
SQLWindows are:

¢ Order entry system. A salesperson can use this system to take an order from
a customer and generate an invoice.

e Patient treatment tracking system. A physician can enter the diagnosis and
prescribe the treatment. The pharmacist can later use the same system to fill
the prescription.

e Accounting modules. For example, accounts receivable, accounts payable,
general ledger, etc.

¢ Payroll and human resource management system. The system may even
contain pictures of employees.

e System to track sales persons and sales activities.

SQLWindows is also used in some universities to teach GUI and object-oriented
programming.

Most applications are deployed with several client machines running the
SQLWindows application and connected to a database server. The database
server can be any database supported by SQLWindows connectivity.

As the number of people using the system grows, the server can be upgraded
either by using a more powerful CPU, higher performance platform (SQLBase
NLM instead of SQLBase for DOS), or a different database (DB2 running on an
IBM mainframe computer instead of a SQLBase NLM running on an Intel
Pentium based PC). All this can be done with little or no change to the
application running on the client machines. This is a big advantage of
client/server architecture.

Power Programming with SQLWindows 11

Sometimes the entire development is done using a local, single-user edition of
SQLBase server for Windows. A departmental or enterprise-wide server is used
when the application is deployed.

Tool Palette

Figure 2.1 shows the SQLWindows tool palette. The tool palette is a moveable
window that contains a drawing tool for each object you can create at
designtime. Display the tool palette by choosing View, Tool Palette... from the

1. Window grabber 2. Object selector 3. Object duplicator 4. Arrange/Tab
order.

— lAvailable classes for the object (tool) selected. l

oy B ll. Background text 2. Group box 3. Frame 4. Line 5. Data field.

1. Multi-line text field 2. Table window column 3. Custom control
(including VBX controls) 4. Push button 5. Radio button.

—

™~ Il.Check box 2. Option box 3. List box 4. Combo box 5. Child table window.]

\ 1. Child QuestWindow 2. Picture 3. Horizontal scroll bar 4. Vertical scroll
IS NAIET bar 5. Class editor.

_ \ IAvaiLable data sources for QuickObjects.]
MDI Window \
Fom Dislog [Available fields of the data source. J
Table Quest
Figure 2.1 The tool palette — in wide mode.

menu or by pressing F4.

You can select a narrow or wide palette from the system menu of the tool palette.

Customizer

Each top-level and child object has attributes that define how it appears.
Attributes can include the color, font, and location of the object. Object attributes
can be defined via an object’s customizer.

12 Getting Started with SQLWindows Chapter 2

cQuickField

Obsect Name

Visre
Location and Size

Data Type
Max Data Length
Ediable

4

4

2

P

»

»

Border »
Justity »
»

»

4

14

4

»

4

»

Format
Input Mask
Country

Background Color
Text Color

Font Name
Font Size
Font Enhancement

Quick Field.
Edi Actions

Figure 2.2 Customizer for a cQuickField data field.
There are two ways you can bring up the customizer for an object:

e Double-click or click the right mouse button on the object in the design
window.

e Double-click or click the right mouse button on the box after the diamond in
the outline (code) as shown in Figure 2.3. I explain application outline later in
this chapter.

% cQuickField: COMPANY_ID

Double-click or press
right mouse button here
to bring up the
customizer.

Figure 2.3 Bringing up the customizer from the outline.

QuickObjects

Before you begin writing your first SQLWindows application using
QuickObjects, let me give you a brief overview of QuickObjects.

Power Programming with SQLWindows 13

QuickObjects are a group of pre-defined objects. These objects let you develop
applications in a quick and easy manner by providing a family of smart (data-
aware) visual and non-visual objects.

There are three categories of QuickObjects:

Data Sources

Data source QuickObjects provide a connection to data from sources such as
SQL data, email data, or Lotus Notes data. In most cases, the data source
QuickObjects are made invisible after defining them. They perform the
actions of accessing and updating the data behind the scene.

Visualizers

Visualizers are used to display data in objects such as radio buttons or list
boxes. The type of visualizer to use depends on the semantics of the data and
the user interface desired. For example, if you want to place on your form a
method of payment, and there are three options—cash on delivery, credit
card, and purchase order, it makes sense to use a group of three radio
buttons. On the other hand, for assigning a trainer to a person in a spa, using
a list box is more appropriate.

Commanders

Commanders are used to manipulate data such as viewing a previous
record, retrieving data, inserting a new record, deleting an existing record,
applying changes, or discarding changes. Commanders direct the data
source to perform these actions. Later, you see that action displayed in the
visualizers.

These three objects are typically added to a form window. Figure 2.4 shows the
relationship between these categories using a SQL database data source.

14 Getting Started with SQLWindows Chapter 2

Visualizers

Payment

C: CASH ON DELIVERY

% | (: CREDIT CARD

& PURCHASE ORDER

v v :
City ‘| Payment | Exclusive : ¥ Exclusive

"
| Frst

<0 ¢
Retrieve Prev

I »
Apply Next

Data Source : a "
. Discard Lost

Commanders

Figure 2.4 Relationship between data source, visualizers, and commanders.

Power Programming with SQLWindows 15

Building Your First SQLWindows Application

In this section you develop and run your first SQLWindows application—
QUICKFRM.APP using QuickForms and QuickObjects. I show you how to run
this application. You will also create the same application by using QuickObjects
directly and improve the user interface by using radio buttons and a check box
instead of data fields.

Later, I explain how to generate an executable (.EXE) file for an application, and
distribute, and deploy the executable version. Once you complete the process,
you become familiar with the mechanical steps. In later chapters, you can focus
on what goes in an application.

About QUICKFRM.APP

Figure 2.5 shows the main form window of the application. Using this
application, a user can maintain records of the RETAIL_CUSTOMER table of the
GUPTA database that comes with SQLWindows. The user can go to the first,
previous, next, and last record, insert a new record, delete or modify an existing
record. Once all the changes have been made, the user can either apply the
changes to the database or discard them.

The RETAIL_CUSTOMER table contains the following columns:

COMPANY_ID (INTEGER, Data Required, Must be Unique)
COMPANY_NAME (VARCHAR 30)
PHONE (CHAR 15)

FAX (CHAR 15)

ADDRESS (VARCHAR 30)

CITY (VARCHAR 30)

STATE (VARCHAR 2)

ZIP (VARCHAR 10)

COUNTRY (CHAR 15)

PAYMENT (CHAR 20)
EXCLUSIVE (CHAR 3).

16 Getting Started with SQLWindows Chapter 2

== Mantenance ot GHEPTARETAN COSTOME R Table
File Edit
" Addr]
Erst 05511011 Likeiike Lane ‘
< City |choluru i
Prev
= Company id 4
D,
Nox: i Company NamelMaU' Mu-Mus
kast Exclusive
Fax{i02-555-2424
Ngw
- Paymert {CREDIT CARD|
Relete Phone 167555 1212
-9 State
HI
Retrieve
: 2 39878
/
Apply
Ths record has been edred I s

Figure 2.5 The main form window of QUICKFRM.APP.

Creating a New Application

When you start SQLWindows, it displays a dialog box as shown in Figure 2.6. If
you are already in SQLWindows, choose File, New from the menu.

SOLWindows
-Crose s newform eing —————————1 [_cancer_]

’ ® QuickForms E
€ Custom Form Designer QuickTips ~ _I

With QuickFarms |
you can quickly ;
build powerful ‘
|
|

. " client/server
{ Open an Existing Application applications

Show this dialog at startup

Figure 2.6 Dialog box shown when SQLWindows starts up.

At this point you can create a new application or open an existing application.
For a new application, SQLWindows creates the application based on the

Power Programming with SQLWindows 17

application specified in the preferences. Normally, it refers to the NEWAPP.APP
file in the directory where you have installed SQLWindows. You can change it by
choosing File, Preferences, General... from the menu.

If you choose QuickForms, SQLWindows guides you through steps to create an
application using QuickObjects. QuickForms is the default, so press the Next
push button to go to the next step.

Selecting Window Type and Toolbar Position

Figure 2.7 shows the dialog box displayed by the next step. You can choose to
create an MDI (Multiple Document Interface) window or a form window.
Choose Form Window. Using this dialog box, you can specify the position of the
toolbar. The default is Top. As you can see in Figure 2.5, the form window of
QUICKFRM.APP has a toolbar on the left, so choose Left and press the Next
push button to go to the next step.

SELWINdGows

QuickForms .
Sotact our Window Type B
& Fom Window
—

[QuickTips — -/
[Select Your Toolbar Position

prm— Make your
H] @ Left C: Top selections to

customize the
look and feel of

EE € Right D € No Toolbar your window.

Figure 2.7 Selecting window type and toolbar position.
Adding a Database

SQLWindows asks you to specify the database name, user name, and the
password that you want to use. See Figure 2.8. Specify GUPTA, SYSADM, and

18 Getting Started with SQLWindows Chapter 2

SYSADM. SYSADM is the user name for the system administrator for a SQLBase
database. The default password is SYSADM unless you have changed it. In this
application, you only work with the GUPTA database, but if you want to work
with more than one database, you can press the Database... push button to add
more databases to your application.

" QuickForms - Add Database

GUPTA
f

Password:

Il

Figure 2.8 Adding a database.

Specifying a Data Source

In this step, you specify the data source. Scroll down the list on the left until you
see the table RETAIL_CUSTOMER. Select RETAIL_CUSTOMER by clicking on
it. Click on it again and while the left mouse button is pressed, drag it to the
empty space to the right of the list box. SQLWindows shows you all the columns
of the RETAIL_CUSTOMER table as shown in Figure 2.9. You can exclude a
column of the table from your form by clicking on it. Since you want to include
all the columns of the table, simply press the Next push button to go to the next
step.

Power Programming with SQLWindows 19

Gkt Yeecs <2k Earsn Datn S

[Ta@aGUEsT W1
:wou&m\' T RETAL CUSTOMER

HBBINVOICE_TEM [LJADDRESS
8 INVOICE_NUMBER

Qory _
HERMETAT LlocomPanv o~

I+
-4
H
v

HElMUSIC
HEIMYSALES
HERORDER DETAIL
HEBORDER_MASTER
HElPARTS_SUPPLER
HEllPRODUCT
HESPRODUCTION_DATA

£ PHONE
(ISTATE
e

1. Choose ose or more data saurces from the list oa the left.
Q 2. Click on the data ffems to exciude them from your form.

Figure 2.9 Specifying the table RETAIL_CUSTOMER as a data source.
SQLWindows Creates the Complete QuickForm

When you press the Next push button, SQLWindows creates a form window and
places data fields (visualizers) for all columns of the table, along with their labels.
SQLWindows also places push buttons (commanders) for browsing, inserting,
deleting, etc. in the toolbar of the form window. At this point, the form window
should look very similar to the one shown in Figure 2.5.

Changing Attributes of the Form Window

SQLWindows leaves you with a form window called frml. It has a default title—
QuickForm. To change the attributes, click the right mouse button anywhere on
the form window to display the customizer for the form window. Do not click on
the toolbar, or any child objects on the form. Choose Object Name and specify
frmMain. Choose Object Title and specify = Maintenance of
GUPTA:RETAIL_CUSTOMER Table. When you are done using the customizer,
choose Done. If you wish, you can resize the form window by grabbing the
borders of the form window and dragging them with the left mouse button held
down.

Taking a Break

If desired, you can take a break at this point. Choose Close from the system menu
of the form window and choose File, Save from the SQLWindows menu. Exit

20 Getting Started with SQLWindows Chapter 2

SQLWindows by choosing File, Exit from the SQLWindows menu. When you
come back, start SQLWindows and open an existing application. If you cannot
see the form window, display the form window frmMain by choosing View,
Show Window... from the SQLWindows menu.

Running an Application

When building an application using SQLWindows, you are in design mode. There
are two ways in which you can run your application. One possibility is to create
an executable ((EXE) and run it from outside SQLWindows. Use this option when
the application is complete and is to be distributed and deployed on end users’
machines. However, when you are still in the process of developing and
debugging the application, it is a time consuming process to create an executable
or a runtime file, leave SQLWindows, and run it from outside SQLWindows.

The second way to run your application is from within SQLWindows itself by
entering the user mode. You can do this by choosing Run, User Mode from the
SQLWindows menu.

If there are any changes to your application since you last saved it, SQLWindows
asks you if you want to save the application. I recommend saving the file every
time before running the application. After saving the file, SQLWindows compiles
the application and runs the application in the user mode. To enter the design
mode again, you can either choose File, Exit from the menu of the application
you developed, or choose Run, User Mode again from the SQLWindows menu.

Using QuickObjects

In this section I show you how to create the same application using QuickObjects.
This way you can see the basic components of the QUICKFRM.APP application
that you created using QuickForms. In addition, for the PAYMENT and
EXCLUSIVE fields of the RETAIL_CUSTOMER table, this application
(QUICK.APP) uses a group of radio buttons and a check box respectively, to
improve the user interface. See Figure 2.10.

Power Programming with SQLWindows 21

[od]

lle E£dit

Company Name 1Mau| Mu-Mus J
Prone (103555 212 | Fefizsssam]
Adoress (1011 Liketko Lans]
cy st]20
coem

Payment

PHH';‘ E

z
]

¥ Exclusive

- Cash On Delivery

Credit Cero

<. Purchase Order

5
£l
&

©
s 81 iEX

o
a

Thrs racord has been edied

Figure 2.10 The main form window of QUICK.APP.

Creating a New Application

When you start SQLWindows, it displays a dialog box as shown in Figure 2.6. If
you are already in SQLWindows, choose File, New from the menu.

Select Custom Form Designer and press the Next push button to go to the next
step. This will create a new form window with no child objects on it. If you do
not see the tool palette, press F4 to view the tool palette.

Placing the Data Source on the Form Window

This application uses just one data source which contains all records of the
RETAIL_CUSTOMER table. To place this data source on the form window,
choose the table window tool from the tool palette. When you press the table
window button in the tool palette, the tool palette displays the classes available
for this object in the list box towards the top of the tool palette. See Figure 2.11.
Choose cQuickTable by clicking on it.

22 Getting Started with SQLWindows Chapter 2

& oo |
S]]

Standard

deta source.

MDI Window
Form] Dislog
Table l Quest

Figure 2.11 Selecting table window and cQuickTable from the tool palette.

Notice how the shape of the cursor changes to reflect the tool that you pick from
the tool palette. You can place an instance of the selected object by clicking
anywhere on the form window. This brings up the dialog box shown in Figure
2.12. Select the RETAIL_CUSTOMER table from the Database/Tables list box
and move all the columns from the Columns list box to the list box on the right
by pressing the push button with two right arrows. Press the OK push button to
close the dialog box.

I'Duhbcl'ﬂdibt [Columns

FEEMETAT T @ ADBRESS
rHERMusIC Ty
HEIMYSALES COMPANY_ID Cancsl
rEEORDER_DETAL B _NAME
EXCLUSIVE Detabase
By

AX
PHONE ‘ Detail Tables

=

[QuickTips

1. Select the table for the datn source from the database/table list
2. Move the itams you want to the list on the right.

3. Click ‘Detabase...* to login to a differeat database

4. Only one database table may be aftacked to this data source

Figure 2.12 Choosing the RETAIL_CUSTOMER table and all its columns.

Power Programming with SQLWindows 23

Making the Data Source Invisible

In most cases, you will want to hide the data source so that the data source
accesses and manipulates the data behind the scene. Later, you define visualizers
to view the data, and commanders to send instructions to the data source to
perform desired operations.

You can hide the data source (table window) using the customizer. Open the
customizer by clicking the right mouse button on the data source. Change Visible
to No. Press Done to exit the customizer.

Placing Visualizers on the Form Window

In this step, you will place visualizers on the form window — one for each of the
columns of the RETAIL_CUSTOMER table. See Figure 2.10 for the layout of the
form window.

From the tool palette, choose the data field tool and select cQuickField from the
list of available classes as shown in Figure 2.13. You will see
tbIRETAIL_CUSTOMER towards the bottom of the tool palette and a list of
columns of the data source appears just below it. Choose COMPANY_ID because
this is the first field that appears on the form window.

Place an instance of this object on the form window by clicking on the form
window. Notice how SQLWindows chooses a proper size for the data field and
even places a label Company Id before the data field. Repeat the same process for
COMPANY_NAME, PHONE, FAX, ADDRESS, CITY, STATE, ZIP, and
COUNTRY.

For PAYMENT, present the data as a group of radio buttons because there are
only three choices — cash on delivery, credit card, and purchase order. It is much
easier for a user to click on one of the three choices instead of typing in an entire
word. Using data fields can also lead to spelling mistakes by the users.

To place a group of radio buttons for PAYMENT, choose the radio button tool,
select cQuickRadioGroup, and PAYMENT from the tool palette. Clicking the left
mouse button on the form window places a group of three radio buttons on the
form window.

24 Getting Started with SQLWindows Chapter 2

e

B roas |
+[r3E] |

Standard

&%0
)

R = | |
B
+

MDI Window
Form Dialog
Table Quest

Figure 2.13 Selecting a QuickObject for the COMPANY_ID from the tool
palette.

The values for the EXCLUSIVE column of the RETAIL_CUSTOMER table can
only be YES or NO. Therefore, it is natural to use a check box visualizer for this
column. Choose the check box tool, cQuickCheckBox, and EXCLUSIVE from the
tool palette. Place it on the form window.

Defining Properties of a QuickObject

You must specify when the check box for EXCLUSIVE should be checked and
when it should not. To specify this, select the check box and bring up the
customizer by pressing the right mouse button. Choose Quick Check Box... to
define the properties of the check box. Choose Yes and No for the Checked value
and Unchecked value respectively as shown in Figure 2.14.

Finally, place a frame around the check box by choosing the frame tool from the
tool palette, and placing it on the form window. To change the background color
of the frame, bring up the customizer and specify Gray as the Background Color.

Power Programming with SQLWindows 25

Proparies uf thkEXCLUSIVE
[Sowrce/tem ——) [Chacked value
bIRETAIL_CUSTOMER 1
Fearowip [ves][
rEze
HEISTATE

HEIPHONE
HEEPAYMENT [Unchecked value

HEIFAX
O]

E E H |
§
.3

+HEHCOUNTRY 3

[QuickTips
To define condition :
1. Select datasource and item from laft ist box
Select the values that will cause the button to be checked or
unchecked

rDisplay this prompt in status bar

[)

Figure 2.14 Defining properties of the check box.

Placing Commanders on the Form Window

In this step, you place commanders (push buttons) for various operations to be
performed on the data source. Choose the push button tool and
cQuickCommander from the tool palette. The list towards the bottom of the tool
palette shows a list of all the commanders available. The names are very
descriptive of what operations they perform.

You can select them one by one and place them in the toolbar of the form
window. Alternatively, you can select the first commander in the list (Apply),
scroll to the bottom of the list, press the Shift key, and while holding down the
Shift key, select the last entry of the list (Retrieve). This selects all entries in the
list box. Now, when you click the left mouse button on the toolbar of the form
window, the commanders for each of the entries are placed one below the other.
If you wish, move them around in the order shown in Figure 2.10.

Running QUICK.APP

You can run QUICK.APP by choosing Run, User Mode from the SQLWindows
menu as discussed earlier.

Writing Your Own Code

You just developed two applications, QUICKFRM.APP and QUICK.APP,
without writing a single line of code. You can develop fully functional database

26 Getting Started with SQLWindows Chapter 2

applications using QuickForms and QuickObjects. As you saw, QuickObjects are
smart objects — they know how to access and manipulate the data source. As you
will see in Chapter 8, they are SQLWindows classes. You can create your own
QuickObjects or even extend the existing ones. To modify existing QuickObjects,
create your own QuickObjects, or to develop new applications without using
QuickObjects, you need to write SQLWindows Application Language (SAL)
code.

Application Outline

When you develop an application using, for example, C, you write lines of code
using an editor such as emacs, vi, notepad, or Microsoft Word. For writing an
application, SQLWindows provides its own application outline editor.

The application outline editor differs from a normal editor or a word processor in
that it keeps the code properly structured. For example, statements to be
executed after a successful If statement are at a lower level and indented towards
the right side.

A useful feature of the outline editor is that you may not opt to look at levels
below the level of a certain statement. See Figure 2.15. There are statements
below the If statement but they are not visible at the moment. A filled diamond
before the If statement indicates that there are more statements below this level.
You can look at those statements by double-clicking on the diamond.

Power Programming with SQLWindows 27

You can create a new line by pressing Insert key. You can either type the
statements yourself or choose them from the outline options bar. Pressing
Control-Enter continues the same statement on another line. Pressing Enter ends
this statement and creates another new line. When you are done, you can press
Esc to stop. You can use Alt and the arrow keys to move the highlighted
statement(s) in the outline.

SOt Windows - PHAD . APP - {Main] -
< File Edit View Qutline Arrange JTools Run Window Help s

A filled diamond F3LaL:Ike CeE LI E
indicates that there o Internal Functions [+

¢ Named Menus
are statements e Class Definitions
below this level. « application Actions
+ On SAM_AppStartup

. —f— ! Login Dialeg Box with defaults for database.
!indicates a user, password. Pass hSqlfable as the receive
comment. parametor. . .
Set bConnectTable = SalModalDialog(dlglLogin, hWndNULL,
‘PHAD', °"SYSADM', "SYSADM', hSqlTable)

<

. o ¥ Quit the ppplication if connect not successful
An empty diamond « I not bConnectTable ™1
indicates that there o ¥ Connect successful. create the MDI window
—f— o Call SalCreateWindow(mdiWindow, hWndNULL)
are no statements + On SAM_AppExit
below this level. ¢ On SAM_SqlError
¢ i MDI Window: mdiWindow
+ | Dialog Box: dlgAbout
Status bar + clsdlgReport: dlgReportUiewPrint
indicates the e Dialog Box: dlgZoomIn
| + i Dialog Box: dlglLogin
location of the i Dialog Box: dlgSqlError
cursor in the [+]
outline. o1 1 12

—4- [Application Actions] [SAM_AppStartup]

Figure 2.15 SQLWindows application outline.

Outline Views

Although there is only one outline for an entire application, you can create new
views (windows) to edit specific portions. For example, you can create a new
window to edit only the login dialog box dlgLogin of Figure 2.15. You can create
new views by choosing Window, New Qutline View... from the SQLWindows
menu.

28 Getting Started with SQLWindows Chapter 2

Application Libraries

SQLWindows applications are normally kept in an .APP file. Such an .APP file
can include code from other files, called application libraries. Application
libraries are normally kept in .APL files. There are two main reasons why one
uses application libraries:

e Keep frequently used functions, dialog boxes, etc. in an .APL file so that
different applications (.APP files) can include them.

* Break up a large application into several application libraries so that various
programmers can work on different .APL files at the same time.

'PHAD.APP SQOLHANDL.APL OOP.APP

&
< »

REPORT.APL

A

FRMBROWS.APL

v

Figure 2.16 Applications ((APP files) can include application libraries (.APL
files).

You create an .APL file the same way you create an .APP file. When you save it,
simply choose the appropriate file type from the List Files of Type combo box
and specify an .APL extension for the file name.

You can include an .APL file, for example, SQLHANDL.APL in an application by
inserting a File Include: SQLHANDL.APL statement under the Libraries section.
You can either specify the full pathname here or choose File, Preferences,
General... from the SQLWindows menu and specify File Path(s).

You can edit an application library by opening that file in SQLWindows. Also,
while you are editing an application, you can edit an included application library
by bringing the cursor to a statement from that library and choosing File,
Libraries, Edit Item from the menu or by pressing F5.

Power Programming with SQLWindows 29

Outline Options

Figure 2.17 displays the outline options bar provided by SQLWindows outline
editor to assist you in writing an application. To bring up the outline options bar,
choose View, Outline Options... from the menu or press F2. You can also display
outline options in a dialog box by choosing File, Preferences, Outline Options...
from the SQLWindows menu.

The outline options bar lists items that you can add to the outline. Use the outline
options bar to:

¢ Define menus.

o Define functions, constants, and variables.
o Code SAL statements.

e Set parameters for functions that you call.

The outline options bar is context-sensitive, as you move through the outline, the
contents change to reflect the items that you can add.

30

Getting Started with SQLWindows

Chapter 2

Figure 2.17

List: |

Call
Else
Else if
L

Loop
Retun
Select Case
Set

When
‘While

Add Same Level

Select Case
Set

When
‘While

Al

ID

Add Next Level

Outline options bar.

The outline options bar displays the Add Same Level and Add Next Level push

buttons:

Click Add Same Level to add the highlighted item to the application at the
same level as the selected item in the outline.

Click Add Next Level to add the highlighted item at the next level under the
selected item in the outline.

Type the first few characters of an item in the data field at the top of the list boxes

to scrolls to the item.

Use the combo boxes at the top to set what the Outline Options bar lists when
you edit statements in the outline:

For functions, you can list system functions, user functions, or both.

Power Programming with SQLWindows 31

e For parameters in functions, you can list variables, system variables,
constants, window names, resources, function parameters and window
parameters (when positioned in a function definition or a window
definition), or base classes.

Debugging an Application

SQLWindows provides a full-featured debugger that you can use to debug your
code.

To set a break point on any statement, simply bring the cursor to the statement
and choose Run, Break, Set from the SQLWindows menu. When you run the
application by entering the user mode, execution is suspended before this
statement, thus giving you an opportunity to examine the value of expressions
and variables, and track messages.

When SQLWindows suspends the execution of the application, it displays the
debugger dialog box as shown in Figure 2.18. At this point, you can evaluate an
expression, continue the execution of the application, execute the current
statement (step), step over the current statement, halt the application, or close the
debug dialog box.

If you do not want to evaluate an expression each time the execution is halted,
and want to watch a set of variables, simply press the (Watch) Variables push
button and specify the variables you want to watch. You can also watch
messages and the stack.

SO Windows - Debug (Stoppecd)

Eval: | stUpdateid | 2] | Continue
T Step i
Besult: | String: UPDATE COMPANY_ID SETID =ID « 1 2! | step Qver ;
g
:{ j I-; Close]
[Watch
(Mowsges] [(vambier] [Ses]

Figure 2.18 Debug dialog box displayed when the execution is suspended.

32 Getting Started with SQLWindows Chapter 2

Animation

Sometimes during debugging an application, it helps to watch the statements as
they are executed at runtime. This allows you to know the paths taken by the
application.

Choose Run, Animate, or Run, Slow Animate from the SQLWindows menu
before choosing Run, User Mode to run the application. SQLWindows highlights
each item as it executes. Slow Animate does the same but at a slower speed than
Animate. You can set the time interval between the execution of each item by
choosing File, Preferences, General... and specifying the Slow Animate Interval in
seconds.

SQLWindows Compiler

Beginning with Release 5.0, SQLWindows provides a compiler. The
SQLWindows compiler improves the runtime performance and resource use of
SQLWindows applications. The SQLWindows compiler:

¢ Translates internal functions, global variables, and constants in a
SQLWindows application (source file) into C language statements and then
compiles the statements into a DLL. Future versions of the SQLWindows
compiler will not be limited to translating internal functions only.

¢ Creates a new SQLWindows application outline (output file — .APC file) that
contains an external function definition for each function in the DLL. You can
use this outline as an include library in applications that call the functions.

Creating an Executable (.EXE) File

When you have debugged and tested your application, and are ready to
distribute the executable version of the application, you can create an .EXE file by
choosing File, Make Executable... from the SQLWindows menu. This displays the
dialog box shown in Figure 2.19.

Power Programming with SQLWindows 33

SQLWINdows Make Dxecutable

File Name: Directories:
[ipublomborank]
1 Be :
. ©> publish 1
s
2 disk
(4] +
List Files of Type: Drives:
lExacu!able (*.exe) —[g] {# c: rejesh (&) (=]
I~ EditWindows enabled
Application Icon:
{PHAD.ICO]

Figure 2.19 Creating an executable (.EXE) file of an application.

Use this dialog box to specify the name of the .EXE file and to specify the icon to
be used with this application. (Icons are stored in .ICO files.) The companion disk
includes an icon—PHAD.ICO.

Since an .EXE file does not contain the source code of your application, you can
distribute your application without giving away the source code.

If you check the EditWindows enabled check box, you can later edit certain
attributes of the .EXE file using EditWindows. EditWindows is mainly used to
alter the .EXE file for native language support for the international market.

Creating a Program Item in Program Manager

Once you have the .EXE file for the application, you can create a program group
and a program item for it so that a user can start the application by simply
double-clicking on the icon.

To create a program group, in the Microsoft Windows Program Manager, choose
File, New... from the menu. Choose Program Group and press OK. Enter a
description for the program group in the program group properties dialog box
and press OK. Choose File, New... again. This time choose Program Item and
press OK. This brings up the dialog box shown in Figure 2.20.

34 Getting Started with SQLWindows Chapter 2

Type in the description you want. The command line contains the name of the
executable. The full path name is not necessary if the directory is in the PATH.
Specify the working directory. If the directory where you have installed
SQLWindows (or the necessary runtime files as discussed in the following
section) is not the working directory, make sure that this directory is in the
PATH. Specify the icon by pressing the Change Icon... push button. If you had
specified an application icon when you made the executable, that icon appears in
the list.

Program [tem Properties)

toassand) i

D iption: IPhona and Address

0K

C d Line: |U8LISH\BOOK\DISK\PHAD,EXE

Yorking Directory: IC:\GUPTAS(I

LA

Shortcut Key: [Nnna
[J Run Minimized | Change |con... i
Figure 2.20 Dialog box to create a program item for an executable.

Distributing Your Application

You can distribute the .EXE file to the end users. But distributing the .EXE file
alone is not sufficient as other files are needed at runtime when the end users
install your application. If you are using SQLWindows 4.1 or later, all the
necessary files are already placed in a separate directory called DEPLOY. If you
want to verify if you have the right set of files, here is the complete list of files:

Release 4.1

SQLRUN41.EXE, GEE21.DLL, GRE21.DLL, GCTRL21.DLL,
GTOOLS21.DLL, RDW21.DLL, SQLNUM21.DLL, SWCSTRUC.DLL,
SQLAPIW.DLL, SWIN40.DLL, GTIOBJ21.DLL, IMAGEMAN.DLL,
IMGBMP.DIL, IMGGIF.DIL, IMGPCX.DIL, IMGTIFF.DIL,
IMGWMF .DIL, AUTOSQL.DLL, SWIN41l.DLL.

Release 5.0

SQLRUN50.EXE, GEE30.DLL, GRE30.DLL, GCTRL30.DLL,
GTOOLS30.DLL, RDW30.DLL, SQLNUM30.DLL, SQLAPIW.DLL,
SWIN41l.DLL, GTIOBJ30.DLL, IMAGEMAN.DLL, IMGBMP.DIL,

Power Programming with SQLWindows 35

IMGGIF.DIL, IMGPCX.DIL, IMGTIFF.DIL, IMGWMF.DIL,
AUTOSQL .DLL, SWIN50.DLL, GCMAIL.DLL, GSW16.EXE,
GSWAG16 .DLL, GSWDLL16.DLL, HPORTS50L.DLL, OMS.DLL,
QCKMAIL.DLL, QCKUTIL.DLL, QGRAPH.DLL, SHRTSK30.EXE,
SQLNL.VBX, SQLSST30.DLL, SRVCAP30.DLL, VT50.DLL.

These runtime files do not include the SQLBase for Windows Database Engine,
SQLBase Windows Client Routers, or routers for any of the other databases
supported by Gupta products. These are separate products and must be
purchased separately and used in accordance with the terms and conditions of
the license agreement. Make sure that the SQL.INI file is installed as part of the
installation of these products.

3
Building a Database Application

About DATABASE.APP

Although SQLWindows can be used for developing any graphical Microsoft
Windows application, you are more likely to use SQLWindows for writing a
database application—an application that accesses a database to read data,
modify data, or both. As you saw in Chapter 2, you can develop fully functional
database applications using QuickObjects without writing a single line of code.
QuickObjects are smart objects — they know how to access and manipulate the
data source. As you will see in Chapter 8, they are SQLWindows classes. You can
create your own QuickObjects or even extend the existing ones. To modify
existing (or to write your own) QuickObjects that work with database tables, you
need to know how to access and manipulate database tables.

In this chapter, I will create an application, DATABASE.APP, which can be used
to maintain the COMPANY table of the GUPTA database. (In SQLWindows 4.1
and earlier versions, you find this table in the SWDEMO database.) Among other
things, this application shows you how to:

e Prompt the user with a dialog box to login.

» Browse through records using First, Prev, Next, and Last push buttons on a
toolbar.

¢ Delete or update an existing record, insert a new record, and commit the
transaction.

e Do delete and update operations in a multi-user environment.

e Generate sequential numbers to be used as a primary key while inserting a
new record.

Figure 3.1 shows what the main form of the application looks like when finished.

37

38 Building a Database Application Chapter 3

In this application, I access two tables. COMPANY contains the records that this
application manages. COMPANY_ID contains just one row to remember the next
ID to use when a new record is inserted into COMPANY. It has just one column
called ID, which is defined as an INTEGER. Table COMPANY has the following
columns:

ID (INTEGER, data required)
NAME (CHAR 30)

ADDR1 (CHAR 30)

ADDR2 (CHAR 30)

CITY (CHAR 30)

STATE (CHAR 2)

ZIP (CHAR 10)

COUNTRY (CHAR 20)

PHONE (CHAR 17)

FAX (CHAR 17).

Malitain Records of COMPANY TAb

File
| K Wil g0l @
% First Last Insert | Delete |Update| Undo

l —

Nauo[Nod's Navions|

Phone [111/111-1111 I Fax |111/111-1111

Addr2 [Suite 111

|
]
Addr1 [111 Ryan Plaza |
|
]

City [San Diego | state [ca | z1p 11111

Country [UsA |

Figure 3.1 Main window of DATABASE.APP

Application Actions

Most applications display a login dialog box when the application starts.
DATABASE.APP displays a login dialog box with default values for the database
name (GUPTA), user name (SYSADM), and password (SYSADM). The user can

Power Programming with SQLWindows 39

change any of these values and press the OK push button. If everything goes
well, necessary connections are made to the database and the main form window
displays. If the user name and password are not correct for the database, an error
message displays. The user can type in the correct values and press OK push
button again or quit the application by pressing the Cancel push button. Figure
3.2 shows the Login dialog box.

Database [GUPTA B

User Name {SVSRDH]

Password !xum(uui I

oK Cancel

Figure 3.2 Login Dialog Box for DATABASE.APP

Let’s take a look at the relevant portions of the code. Listing 3.1 shows the global
variables and the Application Actions for DATABASE.APP.

Application Description: DATABASE.APP
Chapter 3
Building a Database Application
Power Programming with SQLWindows
by Rajesh Lalwani.
Copyright (c} 1994 by Gupta Corporation.
All rights reserved.
Constants
User
Number: FIRST_ROW
Number: PREV_ROW
Number : NEXT_ROW
Number: LAST ROW
Number : ERROR_TIME
Number: ERROR_ROWI
Resources
! Set the BMP images for push buttons as resources.
Bitmap: resFirst
File Name: FIRST.BMP

onnnu
S W N O

e
1
@ 1

-1805
06

40

Building a Database Application Chapter 3

Bitmap: resPrev

.File Name: PREV.BMP

kBé;map;;resNext
File Name: NEXT.BMP

- Bitmap: reslLast

. File Name: LAST.BMP

Bitmap: resFetch

File Name: FETCH.BMP
‘Bitmap: resExit’

File Name: EXIT.BMP
Bitmap: resOk

File Name: OK.BMP
Bitmap: resCancel

File Name: CANCEL.BMP
Bitmap: resInsert

File Name: INSERT.BMP
Bitmap: resDelete

File Name: DELETE.BMP
Bitmap: resUpdate

File Name: UPDATE.BMP
Bitmap: resUndo

File Name: UNDO.BMP
Variables
.Sql Handle: hSglSelect
Sgl Handle: hSqglUpdate
Sgl Handle: hSqglDelete
Sgl Handle: hSglInsert
Sqgl Handle: hSqglError
Boolean: bConnectedSelect
‘Boolean: bConnectedUpdate
Boolean: bConnectedDelete

- Boolean: bConnectedInsert

Boolean: bRollback
String: strMessage
Number: nError
Number: nPos
Application Actions
On SAM_AppStartup
! Login Dialog Box with defaults for database, user, password
Set bConnectedSelect = SalModalDialog(dlgLogin, hWndNULL,
‘GUPTA', 'SYSADM', 'SYSADM', hSqglSelect)
! If one connect successful, set DBP_PRESERVE to TRUE and set
the isolation level to Release Locks.
If bConnectedSelect and
SqglSetParameter (hSqglSelect, DBP_PRESERVE, TRUE, '') and
SglSetIsolationLevel (hSglSelect, 'RL"')

Power Programming with SQLWindows 41

! Make other necessary connect's.

Set bConnectedUpdate = SglConnect(hSglUpdate)

Set bConnectedDelete SqglConnect(hSglDelete)

Set bConnectedInsert SqlConnect(hSglInsert)

! If successfully connected, create the main form.

If bConnectedUpdate and bConnectedDelete and bConnectedInsert
Call SalCreateWindow(frmMain, hWndNULL)

On SAM_SqlError
! Get the Sgl Handle,

error.
Call SqglExtractArgs(wParam, lParam, hSqglError, nError, nPos)

! See if the system initiated any rollback. hSqglError would be
invalid if the error occurred during first SqlConnect.

405 Invalid user name
404 Invalid Password
401 Cannot open database
If nError t= 405
and nError != 404
and nError != 401
and hSglError !{= hWndNULL
Call SglGetRollbackFlag{(hSglError, bRollback)
If not bRollback
! Rollback the transaction so that we release any locks held
before we display the dialog box.
Call SqlImmediate ({'ROLLBACK')
Set bRollback = TRUE
Set strMessage = 'The transaction has been rolledback.
Select Case nError
Case ERROR_ROWID
Set strMessage = strMessage ||
'This record has been updated since you fetched it,
Please Refresh and try again.'
Break
Case ERROR_TIMEOUT

Set strMessage = strMessage ||
'Timed out waiting for a lock. Please try again.

You will have to Refresh after that.'

Break
Default
Set strMessage =
Else
Set strMessage = 'Enter the correct values and try again.:®

Call SalModalDialog
(dlgSqlError, hWndNULL, nError, strMessage)

! Return FALSE so that the Sgl function which caused the error
would return FALSE to its caller.

it

error number and position of the last

strMessage || 'Please Refresh.'

42 Building a Database Application Chapter 3

Return FALSE

On SAM AppExit
! Time to disconnect all the connected Sgl Handles.
I1f bConnectedSelect
Call SglDisconnect({ hSglSelect)
If bConnectedUpdate
Call SglDisconnect{ hSglUpdate)}
If bConnectedDelete
Call SqglDisconnect{ hSglDelete)}
If bConnectedInsert
Call SglDisconnect(hSglInsert)

Listing 3.1 Global variables and Application Actions for DATABASE.APP.

Defining Variables

The application defines some sql handles for connecting to the database. A Sql
Handle is a data type to define or identify an open connection to a database. You
declare a sql handle for each connection your application establishes with a
database. Since 1 want one connection each for selecting all the records in
COMPANY table, updating an existing record, deleting an existing record, and
inserting a new record in the table, I have defined four such variables. In case of
an error, hSqlError will store the error causing sql handle as you will see shortly
in the discussion about On SAM_SqlError.

It is also important to remember which sql handles have been connected with the
database successfully so that those sql handles can be disconnected when the
application is terminated. Boolean variables such as bConnectedSelect serve this
purpose. Boolean variable bRollback is used to indicate whether a transaction has
been rolled back. Finally, I use nError and nPos to store the error number and the
position within the SQL statement in case a SQL error occurs.

SAM_AppStartup

SAM_AppStartup message is sent to an application before any of the
application's windows are created. You can process SAM_AppStartup and
perform initialization tasks such as displaying a login dialog box that authorizes
access to a database. This is the first message an application receives and it is sent
only to the Application Actions section of the outline. In this application, I
process this message and first call SalModalDialog to create the Login dialog box
dlgLogin.

Power Programming with SQLWindows 43

Displaying the Login Dialog Box

SQLWindows provides the SalModalDialog function to create a modal dialog
box. A modal dialog box disables its owner window. In this case, since there is no
window created so far, I have specified hWndNULL as the owner. This system
variable represents a null window handle. In contrast to a modal dialog box, a
system modal dialog box disables the entire Windows system.

SalModalDialog can pass information to the dialog box by accepting a variable
number of parameters. The data types of these parameters must match the
parameter data types of the dialog box being created. You define parameters for
the dialog box in the Window Parameters section of the application outline. You
can use window parameters to return information from the window being
created by using a receive type.

In this application, I pass hSqlSelect as the receive parameter; if the user provides
the correct user name and password for the database, the connection is successful
and hSqlSelect is initialized. This is a good time to look at the code of the dialog
box dlgLogin.

Dialog Box: dlgLogin
Description: Dialog Box for login. .
It tries to connect one Sgql Hanndle. If it succeeds, :
it sets the global system variables SglDatabase, SglUser and
SqlPassword. Since one SglConnect ()} was successful, the user
name and password are verified to be correct. Other :
connections can be made using the same user name. and password.
The caller provides the default names to begln wzth. :
Background Text: Database
Background Text: User Name
Background Text: Password
Data Field: dfDatabase
Data Field: dfUser
Data Field: dfrPassword
Display Settings
Format: Invisible
Pushbutton: pbOk
Keyboard Accelerator: Enter
Message Actions
On SAM Click
Set SglDatabase = dfDatabase
Set SglUser = dfUser

44 Building a Database Application Chapter 3

Set SqglPassword = dfPassword
! First connect could take a while, so show the hour glass
Call SalwWaitCursor{ TRUE)
If SglConnect(hSglLocal)
Set hSglParm = hSglLocal
! Connect successful. Show the normal cursor again and end
the dialog box.
Call SalWaitCursor(FALSE)
Call SalEndDialog{ hwWwndForm, TRUE)
! Show the normal cursor again even though connect was not
successful
Call SalWaitCursor(FALSE)
On SAM Create
! Set the picture for the push button using the resource
Call SalPicSet{ hwndItem, resOk, PIC_FormatBitmap)
Pushbutton: pbCancel
Message Actions
On SAM_Click
! The user has given up. End the dialog box.
Call SalEndDialog(hWndForm, FALSE)
On SAM_Create
! Set the picture for the push button using the resource
Call SalPicSet{ hWwndItem, resCancel, PIC_FormatBitmap)
Line
Window Parameters
! Default database name, user name and password to begin with.
String: strParmDatabase
String: strParmUser
String: strParmPassword
Receive Sqgl Handle: hSglParm
Window Variables
Sgl Handle: hSglLocal
Message Actions
On SAM Create
! Use the default values supplied by the caller.
Set dfDatabase = strParmDatabase
Set dfUser = strParmUser
Set dfPassword = strParmPassword

Listing 3.2 The Login dialog box — dlgLogin.
SAM_Create

SAM_Create is sent to a top-level window (dialog box, form window, or table
window) and then to all of its children after they are created, but before they are

Power Programming with SQLWindows 45

made visible. SAM_Create is also sent to an MDI window. After SQLWindows
sends the SAM_Create messages, SQLWindows makes the form window and
data fields visible. By processing the SAM_Create message, an application can
perform initialization tasks. Typical initialization tasks include setting data field
values and populating table windows and list boxes with data from a database.

You can see the use of SAM_Create in Listing 3.2. First, the dialog box itself gets
the message, where I set the values of the data fields dfDatabase, dfUser, and
dfPassword with the default values supplied in the parameters. You can also
choose to set the values of these data fields in their own message actions section
by processing SAM_Create.

Using Resources

Next in the order of events, push buttons ppbOk and pbCancel get SAM_Create
messages. As a good programming practice, you should never depend on which
of the push buttons gets this message first. In response to SAM_Create, both
these push buttons set the picture on them using the resources defined in the
Resources section of the application outline as seen in Listing 3.1.

Resources let you specify bitmaps, icons, or cursors in the Global Declarations
that you can refer to in the SalPicSet or SalCursorSet functions. Resources appear
in the Outline Options dialog box if List Globals is checked. When you go into
run mode at designtime, SQLWindows must be able to find the resources in
external files. When you make an *EXE or *RUN version of the application,
SQLWindows copies the resources from the external files into the application.
You do not need to distribute the external files with a production version of an
application.

You don’t have to use resources; you can specify Picture Contents, File Name...
through the customizer. Using resources saves space in the application if a
resource is used more than once.

hWndItem

Notice the use of hWndltem while calling SalPicSet in Listing 3.1. hWndlItem is a
system variable—this variable is the window handle of the current object. When
actions are executing from an object's Message Actions section, hWndlItem is set
to the window handle of that item. This can be a top level window or a child
object.

46 Building a Database Application Chapter 3

Connecting to the Database

At this point, the dialog box just sits there and waits for the user to either change
the values of the database, user name, or password or press one of the OK or
Cancel push buttons. If the user presses the OK button, pbOk gets the
SAM_Click message. Notice that pbOk has the Enter key defined as the
Keyboard Accelerator, so even when the user uses the keyboard and presses the
Enter key, pbOk receives the SAM_Click message. All the real work of the login
dialog box is done here.

In response to this message, pbOk first copies the values of the data fields into
system variables SqlDatabase, SqlUser, and SqlPassword. They are all string
variables. SqlDatabase contains the name of the database to which the
application connects. The default database name is DEMO. SqlUser contains a
user name necessary to access a database. The default authorization name is
SYSADM. Finally, SqlPassword contains a password necessary to access a
database. The default password is SYSADM. Use these variables with the
SqlConnect, SqlExists, and Sqllmmediate functions.

The first connection to the database can take a while. Hence I use the
SalWaitCursor function to display an hour glass prior to the first call to the
SqlConnect function. Now, pbOk calls SqlConnect to connect with the database
using a local sql handle. If everything goes well, the receive parameter hSqlParm
is set to the local sql handle which is now connected. I use a local sql handle
because SQLWindows does not permit passing a receive parameter to a window
as a receive parameter to a function. The cursor changes back to normal again
using the SalWaitCursor function and the dialog box is ended by calling
SalEndDialog. The control returns to the caller of the SalModalDialog with a
return value specified in the second parameter of SalEndDialog. Since everything
went well, I return TRUE in this case.

SAM_SqlError

There is a possibility, however, that SQLWindows cannot open the specified
database, the user name does not exist, or the password is not correct. When
some SQL error occurs during SqlConnect or during any other SQL function,
SQLWindows sends SAM_SglError to the Application Actions section of the
outline (see Listing 3.1). Here, you can control how the application responds to
an error instead of using the default error processing which SQLWindows

Power Programming with SQLWindows 47

provides. You can also use When SqlError in any actions section of the outline to
process an error. I give you an example of When SqlError later in the book.

Upon receipt of the SAM_SqlError message, I first use SqlExtractArgs to get the
sql handle causing the error, error number, and the position within the SQL
statement where it occurred. SqlExtractArgs extracts this information from
wParam and IParam. wParam and |Param are generic parameters used by
SQLWindows Application Messages (SAM) to hold numeric information useful
for message processing.

I check to see if the error is caused by an invalid database, user name, or
password. Additionally, I check to see if the sql handle is not null because calling
SqlGetRollbackFlag later with a null sql handle would result in an error.

SqlGetRollbackFlag

When a user wants to select, update, or delete a record while some other user
still holds an exclusive lock on a record on the same page as this record, the first
user cannot access the record and gets a time out waiting to acquire a shared or
exclusive lock. To deal with such error conditions, I call SqlGetRollbackFlag to
see if the transaction has been rolled back. SQLWindows sets the rollback flag
when a system-initiated rollback occurs as the result of a deadlock or system
failure. SQLWindows does not set the rollback flag on a user-initiated rollback.
If there is no system-initiated rollback, I call Sqllmmediate to prepare and
execute a ROLLBACK statement.

If the transaction holds a lock, all other users connected to the same database
may timeout also. It is very important to rollback the transaction before
displaying any message to the user. The rollback ensures that the transaction
does not hold any locks.

Hopefully, after some time, the transaction holding the exclusive lock commits
and releases the lock.

Displaying Error Text, Reason, and Remedy

SalModalDialog is called to display the error message, error text, reason, and
remedy. Listing 3.3 shows the dialog box dlgSqlError.

SqlErrorText function gets the error reason or remedy for the specified error code
from ERROR.SQL. You can call SqlError to get the most recent error code. When
your application detects an error condition, you can use the error code returned

48 Building a Database Application Chapter 3

by SqlError to look up the error reason and remedy with SqlErrorText. You can
specify SQLERROR_Reason to retrieve the error code reason,
SQLERROR_Remedy to retrieve the error message remedy, or use OR to get both
reason and remedy.

SqlGetErrorTextX function returns the message text for a SQL error number from
ERROR.SQL file.

Notice that for the multiline fields, I have specified 'Word Wrap' as Yes. If this
customizer attribute is set to Yes, the text in the multiline field wraps. The default
is no.

Coming back to Listing 3.1, after displaying the error, SAM_SqlError returns
with a FALSE value. The function SqlConnect finally returns with the value
FALSE. pbOk recognizes that SqlConnect did not succeed and simply displays
the normal cursor back again.

Dialog Box: dlgSqlError
Title: SQL Error
Description: This dialog box displays the error text, cause and
remedy corresponding to the SQL error nError.
Contents
-Background Text: Message:
Multiline Field: mlMessage
Data
Maximum Data Length: Default
String Type: String
Editable? No
Display Settings
Word Wrap? Yes
Vertical Scroll? Yes
Message Actions
On SAM Create
Set mlMessage = strMessage
Background Text: Reason:
Multiline Field: mlCause
Data
Maximum Data Length: 512
String Type: String
Editable? No
Display Settings
Word Wrap? Yes
Vertical Scroll? Yes

Power Programming with SQLWindows

49

Message Actions
On SAM_Create
Call SqglErrorText(nError, SQLERROR_Reason,
mlCause, SalGetMaxDataLength(mlCause), nMaxCause)
Background Text: Remedy:
Multiline Field: mlRemedy
Data
Maximum Data Length: 512
String Type: String
Editable? No
Display Settings
Word Wrap? Yes
Vertical Scroll? Yes
Message Actions
On SAM Create
Call SqlErrorText(nError, SQLERROR_Remedy,
mlRemedy, SalGetMaxDatalLength(mlRemedy), nMaxRemedy }
Background Text: Error Text:
Multiline Field: mlErrorText
Data
Maximum Data Length: 512
String Type: String
Editable? No
Display Settings
Word Wrap? Yes
Vertical Scroll? Yes
Message Actions
On SAM Create
Set mlErrorText = SqlGetErrorTextX(nError)
Pushbutton: pbDone
Title: Done
Message Actions
On SAM Click
Call SalEndDialog(hWndForm, TRUE)
Background Text: Error Number
Data Field: dfError
Message Actions
On SAM Create
Set dfError = nError
Window Parameters
Number: nError
String: strMessage
Window Variables
Number: nMaxCause
Number : nMaxRemedy

50 Building a Database Application Chapter 3

Message Actions
On SAM Create
! Since we come here during the execution
of a SQL operation, cursor might be a wait cursor.
Show the normal cursor.
Call SalwaitCursor{ FALSE)

Listing 3.3 The digSqlError dialog box.
Ending the Dialog Box

At this point, the user can type in the correct values of the database name, user
name, and password and press OK, or quit by pressing Cancel. If the user
presses Cancel, pbCancel receives a SAM_Click message and in response to this
message, ends the dialog box with FALSE as the second parameter to
SalEndDialog. The control returns to the caller of SalModalDialog with a return
value of FALSE so that it knows that the login did not succeed.

When the Login dialog box calls SalEndDialog, the control comes back to the
SAM_AppStartup section of the application outline. If the login process succeeds,
I set database parameter DBP_PRESERVE to TRUE and set islolation level to
Release Locks.

DBP_PRESERVE—Cursor Context Preservation

In a SELECT statement (query), you identify tables, columns, and rows from
which to select data. The database finds the data that matches the specification.
In a result set mode, you can scroll through the results of such a query. SQLBase
uses a cache on the server side that holds the results of a query to support
browsing. However, other databases such as Sybase SQL Server do not support
this feature. Instead, SQLWindows connectivity maintains a cache on the client
machine. This feature is called frontend result sets.

However, if a new record is inserted by this user or some other user connected to
the same database, it does not appear in the result set. Similarly, if a record is
deleted, it continues to appear in the result set. Of course, whenever this
application tries to fetch this record directly from the server, the server indicates
that the record has been deleted. As you will see later, I provide a Refresh push
button on the toolbar of the main form. Pressing this push button prepares and
executes the SELECT statement, creating the result set again.

Power Programming with SQLWindows 51

SQLWindows applications default to result set mode.

You can use DBP_PRESERVE to get or set the value of the database parameter
that specifies whether cursor context preservation is on or off. If cursor-context
preservation is on, a COMMIT does not destroy an active result set (cursor
context). This enables an application to maintain its position after a COMMIT,
INSERT, or UPDATE.

The cursor context is not preserved after an isolation level change. The context is
preserved after a ROLLBACK if both of the following are true:

o The application is in the Release Locks (RL) isolation level.
e A DDL (Data Definition Language) operation was not performed.

If cursor-context preservation is off (FALSE), a COMMIT does destroy an active
result set. Cursor context preservation is lost. You can use this constant with the
SqlGetParameter and SqlSetParameter functions.

In this application, I set DBP_PRESERVE to TRUE because I do not want the
result set to be destroyed when I COMMIT after updating a record, deleting a
record, or inserting a new record. If I did not set it to TRUE, after a COMMIT
operation, the result set generated by the SELECT statement for browsing all the
records would be destroyed and it would be necessary to prepare and execute
the SELECT statement again. This results in unnecessary delay each time a
record is updated, deleted, or inserted. Also, the user would be annoyed at
having to go back to the first record of the result set each time such a
modification occurs.

Isolation Levels

Isolation refers to the extent to which operations performed by one user can be
affected by operations performed by another user. Isolation levels control the
extent to which changes made by one user affect another user accessing the same
table or tables. SQLBase supports the following isolation levels:

e CS—Cursor Stability. This isolation level locks only the page that you are
currently processing from other users. SQLBase places a shared lock on a
page for as long as the cursor is on that page. It holds exclusive locks and
shared locks untii a COMMIT. Other pages you access during the
transaction become available to other users and they do not have to wait for

52

Building a Database Application Chapter 3

your COMMIT. Data that you read during a transaction can be changed by
other users once your cursor moves on to a new page. SQLBase sends only
one row to the input message buffer despite the size of the buffer. In other
words, each SqlFetchNext or SqlFetchPrevious causes the client and server to
exchange messages across the network.

Use Cursor Stability when you want to update one row at a time using the
CURRENT OF <cursor> clause. When SQLWindows fetches the row into the
client's input message buffer, the page has a shared lock which means that no
other transaction can update it.

RL—Release Locks. This isolation level increases concurrency by releasing all
shared locks by the time control returns to the client. In contrast, under
Cursor Stability, when you move off a database page, SQLBase drops the
shared lock acquired when you read the page; however, if a row from the
page is still in your input message buffer, the page remains locked. This
isolation level fills the input message buffer with rows, minimizing network
traffic. You should use this isolation level for browsing applications which
display a set of rows to the user.

RO—Read Only. This isolation level places no locks on the database and you
can only use it for reading data. SQLWindows does not let you execute Data
Definition Language (DDL) and Data Manipulation Language (DML)
statements while a transaction is in Read Only mode. This isolation level
provides a view of the data as it existed when the transaction began. If you
request a page that is currently locked by another transaction, SQLBase
provides an older copy of the page from the read-only history file. The read-
only history file maintains multiple copies of database pages that have
changed.

This is an appropriate isolation level if you want the data you read to be
consistent, but you do not necessarily need it to be current. This isolation
level also guarantees maximum concurrency. Read-only transactions may
affect performance, so SQLBase disables them by default. SQLBase allows
read-only transactions only when the readonly=1 statement is specified in
the SQL.INI file, or when you issue a SET READONLY 1 command, or when
an application issues a call to sqlset using the SQLPROD parameter. This
isolation level fills the input message buffer with rows.

Power Programming with SQLWindows 53

o RR—Read Repeatability. This isolation level locks all pages that you access
from other users until you COMMIT your transaction. If you re-read a page
during a transaction, you see the same data. Read Repeatability guarantees
that the data you access is consistent for the life of a transaction. Read
Repeatability is the default SQLBase isolation level. This isolation level fills
the input message buffer with rows. All shared locks remain regardless of
the size of the input message buffer until the application issues a COMMIT
or ROLLBACK statement.

Unless you use named transactions as I explain later, the scope of a transaction is
all connections that an application makes to a given database and user name. You
choose an isolation level based on the application's requirements for consistency
and concurrency. An isolation level applies to all sql handles in a transaction.
Changing the isolation level causes an implicit commit on all sql handles in that
transaction. However, calling SqlSetIsolationLevel and specifying the isolation
level already set does not cause an implicit commit.

In this application, I use Release Locks (RL) instead of the SQLBase default, Read
Repeatability (RR). My main concern while writing this application was to
increase concurrency so that scveral users can browse and update the records.
Since all the shared locks are released by the time the control returns to the client,
even many such readers do not interfere with someone who is trying to update a
record. If the shared locks were still held by the readers, an update operation
would fail to acquire an exclusive lock. This would mean that no one would be
able to update a record as long as there was even one reader trying to read from
the same page.

Coming back to Listing 3.1, if everything goes well with setting DBP_PRESERVE,
and the isolation level, I connect other necessary sql handles for the insert,
update and delete operations using the system variables SqlDatabase, SqlUser,
and SqlPassword set earlier by the login dialog box. If there are no problems
encountered, I finally create the main window by calling SalCreateWindow.
SalCreateWindow creates modeless dialog boxes, MDI windows, form windows,
and top-level table windows at runtime. If you specify an owner (hWndOwner—
the second parameter), the new window always displays on top of its owner,
closes when its owner closes, and hides when its owner is minimized.
SalCreateWindow can pass data to and from the window being created by
accepting a variable number of parameters. I will shortly describe what happens

54 Building a Database Application Chapter 3

when this form is created. In Listing 3.4, note that I have specified the
'Automatically Created at Runtime?’ setting to be No.

If the login process did not succeed, I do not do anything and SQLWindows
sends a SAM_AppExit message to the application. The SAM_AppExit message is
also sent after the main window is destroyed. At this time, I check to see if each
sql handle is connected or not. If it is connected, I disconnect the sql handle from
the database using the SqlDisconnect function. Disconnecting the last Sql Handle
from a database causes an implicit COMMIT of the database.

The Main Form Window frmMain

In this section, I describe the main form frmMain. Most of the work is really done
by this form. frmMain creates the result set using a SELECT statement, provides
push buttons on the toolbar to go to the first, previous, next, and last records, and
provides push buttons to update and delete an existing record, and to insert a
new record.

Keeping Track of Changes

The user can make changes to any record and commit the changes by pressing
the Update push button. In order to prevent the user from losing any changes
made without first updating the database, I use bFormDirty to keep track of
whether any changes have been made to the current record. All the data fields on
the form such as dfName, dfAddrl, etc., help maintain this boolean variable
bFormDirty. [use a SAM_Validate message to help me with this.

SAM_Validate

SAM_Validate is sent to a Data field, multiline field, combo box, and column
when the user changes the value of the object and then moves the focus away
from the object. The user can move the focus by several actions such as tabbing to
another object, clicking another object, or using a mnemonic or accelerator to
activate another object. When a user changes one of these objects, the object's
field edit flag changes to TRUE. You can get and set the field edit flag using
SalQueryFieldEdit and SalSetFieldEdit.

At this point, I would like to mention that SAM_Validate is normally used to
validate the value of the object. For example, if you have a data field for interest

Power Programming with SQLWindows 55

rate, you may want to make sure that it is between 0 and 100. In this application,
I am using SAM_Validate to simply set the value of bFormDirty.

SAM_Validate or SAM_AnyEdit?

Alternately, I could use SAM_AnyEdit but that would set bFormDirty everytime
a key is pressed to change a data field—quite unnecessary when we have
SAM_Validate which is sent only when user is moving the focus away from this
object and the value of the object has changed. In Chapter 5, I use SAM_AnyEdit
instead of SAM_Validate. This is because while using the application developed
in Chapter 5, a user can choose a menu item to leave the current record, and
selecting a menu item from the menu does not send a SAM_Validate message.

bFormDirty is reset each time information about a new record is brought into the
data fields.

When the form is created, it receives SAM_Create and in response, it sets the
values of certain strings for containing the actual SQL statements. We will look at
these SQL statements later in the discussion about the push buttons on the
toolbar. It resets the value of bFormDirty and posts a SAM_Click message to the
push button pbRefresh of the toolbar.

SalPostMsg or SalSendMsg?

SalPostMsg posts the specified message to a window by adding the specified
message to the receiver's message queue. SalPostMsg returns immediately and
control returns to the statement after the call to the SalPostMsg function. There is
another function SalSendMsg which sends the specified message to a window.
SalSendMsg does not return until the processing for the message is complete.

Form Window: frmMain
Title: Maintain Records of COMPANY Table
Display Settings
Automatically Created at Runtime? No
Description: The main form to maintain GUPTA.Company table.
Menu
Popup Menu: &File
Menu Item: Eé&xit
Status Text: Exit this application
Menu Actions
Call SalPostMsg{ hWndForm, SAM_Close, 0, 0)
Menu Item: A&bout...
Status Text: Display the About Dialog Box

56 Building a Database Application Chapter 3
Menu Actions
Call SalModalDialog(dlgAbout, hwWwndForm)
Toolbar
Contents

Pushbutton: pbFirst
Pushbutton: pbPrev
Pushbutton: pbNext
Pushbutton: pbLast
Pushbutton: pbRefresh
Pushbutton: pblnsert
Pushbutton: pbDelete
Pushbutton: pbUpdate
Pushbutton: pbUndo
Pushbutton: pbExit
Contents : :
Background Text: Id
Background Text: Name
Background Text: Phone
Background Text: Fax
Background Text: Addril
Background Text: Addr2
Background Text: City
Background Text: State
Background Text: ZIP
Background Text: Country
Data Field: dfid
Data
Data Type: Number
Editable? No
Data Field: dfName
Message Actions
On SAM Validate
Set bFormDirty = TRUE
Data Field: dfPhone
Message Actions
On SAM Validate
Set bFormDirty = TRUE
Data Field: dfFax '
Message Actions
On SAM_Validate
Set bFormDirty = TRUE
Data Field: dfAaddrl
Message Actions
On SAM Validate
Set bFormDirty = TRUE

Power Programming with SQLWindows 57

pata Field: dAfAaddr2
Message Actions
On SAM Validate
Set bFormDirty = TRUE
Data Field: dfcity
Message Actions
On SAM Validate
Set bFormDirty = TRUE
Data Field: dfState
Message Actions
On SAM Validate
Set bFormDirty = TRUE
Data Field: 4fZIP
" Message Actions
On SAM Validate
Set bFormDirty = TRUE
Data Field: dfCountry
- Message Actions
On SAM Validate
Set bFormDirty = TRUE
Data Field: dfRowid
Display Settings
visible? No
‘Functions
runction'>OkToLoseChangelI£Any . :
. Description: See if the form is dirty (changes made to any
data fields). If yes, ask user if it's ok to lose changes.u?:
Returns -
Boolean:
Actions .

-If bForlerty and : i
SalMessageBox{ *‘Lose Changes”' Confirmation',
“MB YesNo | MB. IconQuesnxon f MB DefButtonZ)

Return FALSE e o .

Else L i

Set bFormD;rty FALSE‘; an,f

~ Return TRUE o

;vrunction- uonlaccsoxxf ,tchzrror = £ .

: Descriptxon. This function displays a message box,

in case First, Next, Previous, Last return FETC' EOF.
FETCH.. Delete, or. FETCH_Update.‘m‘v :

Returns
‘Boolean: . L :

Parameters : o .
Number: nInd ‘ e

58 Building a Database Application Chapter 3

Local variables
String: strMessage
Actions
Select Case nInd
Case FETCH_EOF
Set strMessage = ‘Reached the end.‘
Break
Case FETCH_Update
Set strMessage = 'The record has been updated. "
Break
Case FETCH_Delete
Set strMessage = 'The record has been deleted.
Break
Default
Return TRUE
Call SalMessageBeep(0) ;
Call SalMessageBox(strMessage, 'FETCH Information', MB_Ok }
Return FALSE e
Window Variables
String: strSelect
String: strUpdate
String: strDelete
String: strlInsert
‘String: strUpdateId
String: strSelectId
Number: nFetchResult
- Boolean: bOk :
‘Number : nRows
Number: nRowNumber
Boolean: bFormDirty
Window Handle: hWndbDatafield
Message Actions
On SAM Create
! Set the strings for SELECT, UPDATE, INSERT and DELETE
statements. Note the use of ROWID.
Set strSelect = 'SELECT ID, NAME, PHONE, FAX,
ADDR1, ADDR2, CITY, STATE, ZIP, COUNTRY, ROWID
FROM COMPANY '
INTO :dfId, :dfName, :dfPhone, :dfFax, :dfaddril, :dfAaddr2,
:dfcity, :dfState, :d4fzIP, -dfCountry, :dfRowid
ORDER BY ID'
! dfId is a read only data field, so it doesn’t need to be
updated.
Set strUpdate = ‘UPDATE COMPANY
SET NAME=:dfName, PHONE=:dfPhone, FAX=:dfFax,
ADDR1=:dfAddrl, ADDR2=:dfAddr2, CITY=:dfCity,

Power Programming with SQLWindows 59

STATE=:dfState, ZIP=:dfZIP, COUNTRY=:dfCountry
WHERE ROWID=:dfRowid'’
Set strInsert = 'INSERT INTO COMPANY
(ID, NAME, PHONE, FAX, ADDRI1, ADDR2, CITY, STATE, ZIP,
COUNTRY)
VALUES (:dfId, :dfName, :dfPhone, :dfFax, :d4fAddrl,
:dfAddr2, :4fcity, :dfState, :dfzIP, :dfCountry)’
Set strDelete = 'DELETE FROM COMPANY WHERE ROWID=:dfRowid’
{ Increment the ID field of COMPANY_ID
Set strUpdateId = 'UPDATE COMPANY_TID SET ID = ID + 1°
! Get the old value of ID field s
- get strSelectId = 'SELECT (ID - 1) INTO :dfId FROM COMPANY_ID'
t ‘Mark the form as not dirty {(no changes yet))
Set bFormDirty = FALSE i
! Refresh - create the result set
Call SalPostMsg{ pbRefresh, SAM Click, 0, 0)
On SAM_Close :
If not OkToLoseChangesIfAny()
I Return FALSE only if the form is dirty and the user doesn't
want to lose changes. Otherwise, it's ok to leave.
Return FALSE

Listing 3.4 The main form window frmMain.

SAM_Close

When the user presses Exit push button on the toolbar, chooses Exit from the File
menu, Close from the system menu, or the message is sent programmatically in
the case of an error, the form receives a SAM_Close message. SAM_Close is sent
to a dialog box, a form window, top-level QuestWindow, MDI window, or a top-
level table window when you choose the Close command from a window's
system menu or when you double-click on the window's system menu.

SAM_Close is sent to an application to notify the application that a user is
attempting to close a window. By processing the SAM_Close message, an
application can check if there is data that needs to be saved. A SAM_Close
message is not sent on a call to SalQuit, SalEndDialog, or SalDestroyWindow.

If SAM_Close is sent to the Message Actions section of a modal or system modal
dialog box, the application can call SalMessageBox to prevent the destruction of
the dialog box. Otherwise, default processing closes the message box.

60 Building a Database Application Chapter 3

If the window processing SAM_Close does not execute a return, the window
closes; if SAM_Close returns FALSE (or TRUE), the window does not close.

In this application, upon receiving SAM_Close, the form window checks to see if
the user has made any changes to the record. If yes, it asks the user if it's OK to
lose changes. This is done by the function OkToLoseChangeslfAny by calling
SalMessageBox.

Notice the use of MB_YesNo | MB_IconQuestion | MB_DefButton?. This way,
the message box has two buttons, Yes and No. It displays a question mark icon,
and the default button is the second one—No. If the user chooses No from this
message box, FALSE is returned from the On SAM_Close section indicating the
window should not be closed. In all other cases, there is no return and the
window closes.

Let’s now see what each of the push buttons on the toolbar do.

Creating Result Set

The main purpose of pbRefresh is to prepare and execute the SELECT statement
to create the result set, and to post a SAM_Click message to pbFirst so that the
first record is displayed. Let us see the code that does that.

Pushbutton: pbRefresh
Title: Refresh
Message Actions
On SAM Click
If OkToLoseChangesIfany{)
! Refreshing may take a while, so wait cursor
Call SalwaitCursor(TRUE)
If not SqlPrepareAndExecute (hSqglSelect, strSelect)
Call SalMessageBox (
'Could not prepare or execute the SELECT statement.
Exiting.', 'Serious Error', MB_Ok [MB_IconStop)
! Time to quit. Use SalSendMsg instead of SalPostMsg
Call SalSendMsg{ hwWwndForm, SAM _Close, 0, 0)
Else
! Execute was successful; now fetch the first record
Call SalPostMsg(pbFirst, SAM Click, 0, 0)
! Mark bRollback as FALSE as the SELECT was Jjust
executed.
Set bRollback = FALSE
! Don't forget to get the normal cursor back

Power Programming with SQLWindows 61

Call SalWaitCursor({ FALSE)
On SAM Create

! Set the picture for the push button using the resource
Call SalPicSet(hWndItem, resFetch, PIC_FormatBitmap)

Listing 3.5 The pbRefresh push button.
Preparing (Compiling) a SQL Statement

Before you can execute a SQL statement, you must prepare (compile) it. Function
SqlPrepare compiles a SQL statement. Compiling includes:

e Checking the syntax of the SQL statement.
e Checking the system catalog.

e Processing a SELECT statement's INTO clause. An INTO clause names
where data is placed when it is fetched. These variables are sometimes
called into variables. You can specify up to 255 into variables per SQL
statement.

e Identifying bind variables in the SQL statement. Bind variables contain input
data for the statement. Bind variables are used within the WHERE clause of
a SQL statement, the VALUES clause of an INSERT statement, or the SET
clause of an UPDATE statement. You can specify up to 255 bind variables
per SQL statement.

SqlPrepare is optionally followed by a SqlOpen, SqlExecute, SalTblDolnserts,
SalTblDoUpdates, SalTblDoDeletes, or fetches.

Executing a SQL Statement

SqlExecute executes a SQL statement that was prepared with SqlPrepare or
retrieved with SqlRetrieve. Bind variables are sent to the database when you call
SqlExecute. SqlExecute does not fetch data. To fetch data, you should call one of
the SqlFetch* functions: SqlFetchNext, SqlFetchPrevious, or SqlFetchRow. In this
application, pbRefresh posts a SAM_Click message to pbFirst which, as we will
see shortly, calls SqlFetchRow.

You can combine both prepare and execute by calling one function
SqlPrepareAndExecute.

Let me reproduce here the SELECT statement from Listing 3.4. strSelect is set to:

62 Building a Database Application Chapter 3

'SELECT ID, NAME, PHONE, FAX, ADDR1, ADDR2, CITY, STATE,
ZIP, COUNTRY, ROWID FROM COMPANY INTO :dfId, :dfName,
:dfPhone, :dfFax, :dfAddrl, :dfAddr2, :dfCity, :dfState,
:dfZIP, :dfCountry, :dfRowid ORDER BY ID'.

The INTO clause contains INTO variables such as :dfld, :dfName, etc. These are
the names of the data fields on the form. dfRowid is a hidden field and is used to
store the ROWID.

ROWID

ROWID is a feature of SQLBase which enables you to identify not only a row but
a version of a row in a table. ROWID is used to avoid overwriting another user's
update in a multi-user environment. SQLBase itself assigns each row a unique
string identifier when a new row is inserted in a table. SQLBase also changes this
identifier automatically whenever a user updates it. I will show you how I avoid
overwriting another user's updates when I discuss pbDelete and pbUpdate.

Other databases may have similar features to avoid overwriting other users’
modifications in a multi-user environment.

Finally, it resets a flag bRollback. I use this flag to indicate that the transaction
has been rolled back.

Fetching First Row

The main purpose of pbFirst is to fetch the first row of the result set. It first
makes sure that either no data fields on the form have changed or it is OK with
the user to lose the changes. Since the row numbers are O-based, it calls
SqlFetchRow with 0 as the row number. nFetchResult contains the result of this
operation. It can contain one of the following values:

Constant Description

FETCH_Ok This constant is returned td one of thé SqlFetch*
functions to indicate that the requested row was
successfully fetched from the query set.

FETCH_Update Indicates that the row has been updated since the
time the SELECT statement was executed.

Power Programming with SQLWindows 63

Constant Description

FETCH_Delete Indicates a failure in fetching the requested row.
SQLWindows could not fetch the row because it
was deleted since the time the SELECT statement
was executed. The result set remains active. All
the INTO variables contain NULL values.

FETCH_EOF Indicates a failure in fetching the requested row.
SQLWindows could not fetch the row because it
reached the end of the result set.

You can use these constants with the SqlFetchNext, SqlFetchPrevious, and
SqlFetchRow functions.

Pushbutton: pbFirst
Title: First
Message Actions
On SAM_Click
If OkToLoseChangesIfAny()
{ Fetch the first row : row number 0. :
Set bok = SqlFetchRow(hSglSelect, 0, nFetchResult)
If bOk
Call MessageBoxIfFetchError{ nFetchResult)
! Remember where we are in the result set
Set nRowNumber = 0 : .
| Enable Next and Last. Disable First and Previous
Call SalEnableWindow(pbNext } :
Call SalEnableWindow(pblLast)
Call SalDisableWindow{ pbFirst }
Call SalDisableWindow(pbPrev)
On SAM Create i s : Lo
! Set the picture for the push button using the resource
call SalPicSet(hWndItem, resFirst, PIC_FormatBitmap)

Listing 3.6 The pbFirst push button.

Function MessageBoxIfFetchError is called to display an appropriate message if
nFetchResult is not FETCH_OKk. If everything goes well, pbFirst disables pbFirst
and pbPrev, and enables pbNext and pbLast. Since I also want to keep track of
the row number being displayed on the form, I reset nRowNumber.

64 Building a Database Application Chapter 3

Fetching Next Row

pbNext calls SqlFetchNext to fetch the next row. Here are the relevant portions of
code:

Pushbutton: pbNext
Title: Next
Message Actions
On SAM Click
If OkToLoseChangesIfAny({)
! Fetch the next row of the result set.
Set bOk = SqlFetchNext{ hSqglSelect, nFetchResult)
If bok '
Call MessageBoxIfFetchError(nFetchResult)
! Remember where we are in the result set
Set nRowNumber = nRowNumber + 1
Call SalEnableWindow(pbFirst)
Call SalEnableWindow(pbPrev)
Else :
!" Could not go to the next row (last row?).
If nFetchResult = FETCH_EOF
Call SalbDisableWindow(pbNext)}
Call SalDisableWindow(pbLast)}
On SAM Create
! Set the picture for the push button using the resource
Call SalPicSet(hWndItem, resNext, PIC_FormatBitmap)

Listing 3.7 The pbNext push button.

Fetching Previous Row

pbPrev does pretty much the same as pbNext except that it calls
SqlFetchPrevious to fetch the previous row. Here are the relevant portions of

code:

Pushbutton: pbPrev
Title: Prev
Message Actions
On SAM_Click
If OkToLoseChangesIfAny()
! Fetch the previous row of the result set.
Set bOk = SqlFetchPreviocus(hSglSelect, nFetchResult)
If bOk
Call MessageBoxIfFetchError(nFetchResult)
! Remember where we are in the result set

Power Programming with SQLWindows 65

Set nRowNumber = nRowNumber - 1
! Enable Next and Last

Call SalEnableWindow(pbLast)}
Call SalEnableWindow(pbNext)

Else
! Could not go to the previous row (first row?).

If nFetchResult = FETCH_EOF
Call SalDisableWindow(pbFirst)
Call SalbisableWindow(pbPrev)
On SAM_Create
! Set the picture for the push button using the resource
Call SalPicSet{ hWndItem, resPrev, PIC_FormatBitmap ')

Listing 3.8 The push button pbPrev.

Fetching the Last Row

To go to the last row, pbLast first calls SqlGetResultSetCount to get the number
of rows in the result set. This function counts the rows in a result set by building

Pushbutton: pbLast
Title: Last
Message Actions
Oon SAM_Click
If OkToLoseChangesIfany()
! First see how many rows there are in the result set
If SqlGetResultSetCount{ hSglSelect, nRows)
! Fetch the last row : row number nRows-1 because it's 0-

based
Set bOk = !
SqlFetchRow(hSglSelect, nRows-1, nFetchResult)
I1f bOk
Call MessageBoxIfFetchError(nFetchResult)
! Remember where we are in the result set (last row, 0-

based)
Set nRowNumber = nRows - 1
! Disable Next and Last. Enable First and Previous
Call SalkEnableWindow({ pbFirst)
Call SalEnableWindow(pbPrev)
Call SalDisableWindow(pbNext)
Call SalDisableWindow(pbLast)

66 Building a Database Application Chapter 3

On SAM Create
! Set the picture for the push button using the resource
Call SalPicSet(hWndItem, resLast, PIC_FormatBitmap)

Listing 3.9 The pbLast push button.

the result set. SQLWindows fetches each row that has not already been fetched,
returns a count of the rows, and positions the cursor back to its original position.
This can be time-consuming if the result set is large. You must be in Result Set
mode. You must call SqlExecute before SqlGetResultSetCount. Once it knows the
total number of rows in the result set, it calls SqglFetchRow to fetch the last row.

Deleting a Record

There are two possibilities when the user presses the Delete push button. There is
a possibility that the user had earlier pressed the Insert push button and was just
typing some values in the data fields. In this case, there is no real row to be
deleted from the database. Simply posting a SAM_Click message to pbUndo
would bring back the row the user was viewing before pressing the Insert push
button. The other possibility is that the user really wanted to delete an existing
row from the table. For this, pbDelete needs to prepare and execute a Delete
statement. To find out whether the user was inserting a new record or was
viewing an existing record, I examine the dfId data field of the form. As you will
see shortly, dfld is blank when a user presses the Insert push button but has not
pressed the Update push button yet. For an existing record, this data field will
always contain a value.

Deleting a Record in a Multi-user Environment

Let us revisit the DELETE statement as set in Listing 3.4. strDelete was set to
'‘DELETE FROM COMPANY WHERE ROWID=:dfRowid'. We could have used
ID=:dfId in the where clause instead, but that would not be appropriate in a
multi-user environment. Let me explain why. Let us consider the following
scenario in which two users USER1 and USER?2 are both running this application
at the same time.

[~ USERI USER2
1. Fetches row with ID=10. 1. Fetches row with [D=10

Power Programming with SQLWindows

67

USER1

USER2

2. Updates row with ID=10. Since
USER2 has released the shared lock,
USER1 is able to acquire exclusive lock
and also commit the transaction.

2. Looks at the stale information for
ID=10 and decides to delete it. By
now, USER1 has committed, so there
are no locks on the record. USER? is
able to acquire exclusive lock and
delete the record. USER?2 just deleted
the record based on the stale
information! If USER2 knew the latest
changes by USER1, maybe USER2
would have decided not to delete the
record.

Let me show you how using ROWID would have saved USER2 from making this

mistake.

USER1

USER2

1. Fetches row with ID=10. The
ROWID, say, ROWID1 is also fetched.

1. Fetches row with ID=10. The
ROWID (ROWID1) is also fetched.

2. Updates row with ROWID =
ROWIDI1. Since USER2 has released
the shared lock, USER1 is able to
acquire exclusive lock and also commit
the transaction. But since the row has
been modified, SQLBase changes the
ROWID to, say, ROWID2.

68 Building a Database Application Chapter 3

USER1 USER2

2. Looks at the stale information for
ID=10 and ROWID = ROWID1 and
decides to delete it. It issues a
DELETE statement to delete the row
with ROWID = ROWID]1. But there is
no such row in the table and the
delete operation fails!

At this point, the USER2 has the option of looking at the latest value of the row
and decide based on the latest information whether to delete it or not. That is
precisely what pbDelete does. It marks the form as dirty and posts a SAM_Click
message to pbRefresh. If the user chooses, the result set will be created again
fetching the latest information.

If everything goes well, a SAM_Click message is sent to pbNext if the row just
deleted was the first one or a SAM_Click message is sent to pbPrev if the row
was not the first one. If the transaction has been rolled back, nothing is done
because the result set may be destroyed.

Pushbutton: pbDelete
Title: Delete
Message Actions
On SAM_Click
! Get the confirmation for the delete operation
If SalMessageBox('Are you sure?', 'Confirmation’,
MB_YesNo | MB_IconQuestion | MB_DefButton2) = IDYES
! See if we are in the middle of insert operation
If dfIs is null, it means we were inserting a new
record. ' ’ ‘
If not SalIsNull{ dfid)
! Not in the middle of insert operation
Call SalWaitCursor{ TRUE)
If not SglPrepare{ hSglDelete, strDelete)
Call salMessageBox{ ‘Could not prepare the Delete
statement. Exiting.',
‘Serious Error', MB_Ok | MB_IconStop)
! Time to quit
Call SalSendMsg(hwWwndForm, SAM_Close, 0, 0)
If SglExecute(hSglDelete)

Power Programming with SQLWindows 69

! Executed the DELETE statement. Now COMMIT it.
Call SglCommit{ hSglDelete)
! Mark the form as not dirty (no changes yet)
Set bFormDirty = FALSE
! Current record is deleted. Display the previous one.
If the deleted record was the first one, display the
next one. If the transaction has been rolledback,
don't do anything.
If not bRollback
If nRowNumber > 0
Call SalPostMsg(pbPrev, SAM Click, 0, 0)
Else
Call SalPostMsg(pbNext, SAM Click, 0, 0)
Call SalWaitCursor(FALSE)
Else
! In the middle of insert operation. The record is not
INSERTed yet, so simply undo all the changes to this
record.
Call SalPostMsg(pbUndo, SAM_Click, 0,0)
On SAM_Create
! Set the picture for the push button using the resource
Call SalPicSet{ hWndItem, resDelete, PIC_FormatBitmap)

Listing3.10 The pbDelete push button.

Inserting a New Record

You might be surprised, but pblnsert does not do a lot. It just empties all the
fields on the form. When the user has typed in all the information except ID,
which is a read-only data field, the user presses the Update push button which is
where the real insert operation, including obtaining a new ID number, is done.

Pushbutton: pbInsert
Title: Insert
Message Actions
On SAM_Click
If OkToLoseChangesIfAny()
! Clear all the data fields on the form. Get the first
data field on hWndForm.
Set hWndDatafield = SalGetFirstChild{(hWndForm,
TYPE_DataField)
while hWndDatafield != hWndNULL
! Clear the data field
Call SalClearField(hWndDatafield)
! Now get the next data field. Note the use of

70 Building a Database Application Chapter 3

hWndDatafield; not hWndForm for the first parameter.
Set hWndDatafield = SalGetNextChild(hWndbatafield,
TYPE_DataField)
On SAM_Create
! Set the picture for the push button using the resource
Call SalpPicSet(hWndItem, resInsert, PIC_FormatBitmap)

Listing 3.11 The push button pblnsert.
Finding All Children

To empty all the data fields on the form, I use three functions: SalGetFirstChild,
SalGetNextChild and SalClearField.

SalGetFirstChild

SalGetFirstChild returns the handle of the first child window of the specified
type. For example, if you were interested only in data fields, push buttons, and
radio buttons, you specify TYPE DataField | TYPE_PushButton |
TYPE_RadioButton. Since I am only interested in emptying the data fields, I
specify just TYPE_DataField.

SalGetNextChild

SalGetFirstChild gets the window handle of the first child of the specified type,
while [use SalGetNextChild in a loop to get the next child. This function should
really be called SalGetSibling because it takes the window handle of the child
window and not the parent window as the first parameter.

SalClearField

For each of these child objects (data fields), I use SalClearField to make them
blank. This function clears the value from a data field, multiline field, or table
window column.

When there are no more children left, SalGetFirstChild and SalGetNextChild
return hWndNULL and the While loop ends.
Committing Changes

This is the place where the real insert or update operation takes place. An
INSERT operation needs to take place if the user wants to insert a new row in the
table. An UPDATE operation is needed if the user wants to modify an existing

Power Programming with SQLWindows 71

row. Like pbDelete, ppbUpdate also finds out which of the two operations to
perform by examining the data field dfld.

Pushbutton: pbUpdate
Title: Update
Message Actions
On SAM Click
Call SalWaitCursor(TRUE)
! See if we are in the middle of insert operation. If dfIs

is null, it means we were inserting a new record.
If SalIsNull(dfI1d)
! Insert operation
! Increment the ID number in COMPANY_ID table and select
the old value. To generate the next sequential ID.
Updating puts the exclusive lock so no one else would
be able to read it until we COMMIT.
If (SglImmediate(strUpdateId)

and SglImmediate (strSelectId)

and SqlPrepareAndExecute(hSglInsert, strinsert })

! Time to commit the transaction. Note that it will
commit both the changes to the record as well as the ID
in the COMPANY_ID table.

Call SqlCommit(hSglInsert)}

! Mark the form as not dirty (no changes yet)

Set bFormDirty = FALSE

! Now re-fetch the current row of the result set.

! In case, the UPDATE failed last time and rollback
occurred, don't fetch the row as the SELECT may not
have survived the rollback.

If not bRollback

Call SqlFetchRow(hSglSelect, nRowNumber, nFetchResult)

Else
! Normal Update - not insert operation
If not SqglPrepare(hSglUpdate, strUpdate)
Call SalMessageBox(
‘Could not prepare the Update statement',
‘Serious Error', MB_Ok | MB_IconStop)
! Time to quit
Call SalSendMsg(hWndForm, SAM Close, 0, 0)
If SglExecute(hSglUpdate)
! UPDATE was successful, now COMMIT it.
Call SglCommit(hSglUpdate)
! Mark the form as not dirty (no changes yet)
Set bFormDirty = FALSE

! Now re-fetch the same row of the result set. One reason

72 Building a Database Application Chapter 3

we have been keeping track of nRowNumber. This
refetching is necessary to get the new ROWID so that if
the user makes a change to this record again without
first refreshing, invalid ROWID error would not occur.
In case, the UPDATE failed last time and rollback
occurred, don't fetch the row as the SELECT would not
have survived the rollback.
If not bRollback
Call SglFetchRow({ hSglSelect, nRowNumber, nFetchResult)
Call SalWaitCursor(FALSE)
On SAM_Create
! Set the picture for the push button using the resource
Call SalPicSet(hWndItem, resUpdate, PIC_FormatBitmap)

Listing3.12 The pbUpdate push button.
Inserting a New Record

In this case, the user must have earlier pressed the INSERT push button and,
possibly, entered some values in the data fields of the form. Since dfID data field
is read-only, it is blank at the moment. When the user presses this push button,
pbUpdate has to calculate the next ID to use for this new record, increment the
ID for future use, insert the record with the ID just calculated, and commit the
transaction.

Calculating Next Sequential Number

To remember the next ID to use, [make use of the COMPANY_ID table, which
contains just one row and one column. This is the next ID to use. I first update
this row using the following SQL statement:

'UPDATE COMPANY_ID SET ID = ID + 1°

After having done this, I get the old value of ID by executing the following SQL
statement:

'SELECT (ID - 1) INTO :dfId FROM COMPANY_ID'
I execute UPDATE first so that an exclusive lock is placed on this row of

COMPANY_ID and no one else can update or read this row until pbUpdate
commits the transaction.

Had I executed 'SELECT ID INTO :dfld FROM COMPANY_ID' before the
UPDATE operation, using RL isolation level causes all shared locks to be

Power Programming with SQLWindows 73

released by the time control is returned to the client machine. Another user might
execute the SELECT statement before this user executes the UPDATE statement.
As a result, both the users will assign the same ID to their new records. The ID in
COMPANY_ID would be correctly incremented by 2 because of two UPDATE
statements executed by the two users.

Sqllimmediate

As you might have noticed, I use Sqllmmediate for these two operations.
Sqllmmediate prepares and executes a SQL statement. Sqllmmediate actually
performs a SqlConnect for a hidden sql handle, a SqlPrepare, a SqlExecute, and
for SELECT statements, a SqlFetchNext. The first time you call Sqllmmediate,
SQLWindows performs all of these functions. On later calls, only some of these
functions are performed. For example, if the (hidden) sql handle is still
connected to a database, SQLWindows does not perform a SqlConnect. If the
SQL statement to compile is the same statement as that used by the last
Sqllmmediate call, SQLWindows does not perform a SqlPrepare. You can use
Sqllmmediate with INSERT, UPDATE, DELETE, and other non-query SQL
commands. You can use Sqllmmediate with a SELECT statement if you expect
that the statement only returns one row. While connecting the hidden sql handle,
SQLWindows uses the values of the SqlDatabase, SqlUser, and SqlPassword
system variables to connect to a database.

Here is the INSERT statement I use to insert the record in the table:

'INSERT INTO COMPANY (ID, NAME, PHONE, FAX, ADDR1, ADDR2,
CITY, STATE, ZIP, COUNTRY) VALUES (:dfId, :dfName, dfPhone,
:dfFax, :dfAddrl, :dfAddr2, :dfCity, :dfState, :4fZIP,
:dfCountry) '

If everything goes well, I call SqlCommit to commit the transaction. Although I
call SqlCommit for hSqllnsert, it commits all of the SQL transaction’s cursors that
are connected to the same database.

Updating an Existing Record

The operation for an UPDATE is straight forward. Here is the SQL statement for
the update operation:

'UPDATE COMPANY SET NAME=:dfName, PHONE=:dfPhone,
FAX=:dfFax, ADDR1=:dfAddrl, ADDR2=:dfAddr2, CITY=:dfCity,

74 Building a Database Application Chapter 3

STATE=:dfState, ZIP=:dfZIP, COUNTRY=:dfCountry WHERE
ROWID=:dfRowid'

Updating a Record in a Multi-User Environment

Once again, [used ROWID so this update operation does not overwrite someone
else’s update to the same row. Let’s see how that could happen if I did not use
the ROWID. Again, let’s assume there are two users; USER1 and USER2. USER1
wants to change the phone number and fax number of company with ID=10.
USER2 wants to change the address of the same company.

USER1 USER2

1. Fetches row with ID=10. 1. Fetches row with ID=10.

2. Changes phone number and fax
number and updates. Since USER2 has
released the shared lock, USER1 is able
to acquire exclusive lock and also
commit the transaction.

2. Changes the address and updates.
By now, USER1 has committed so
there are no locks on the record.
USER2 is able to acquire exclusive
lock and update the record. USER2
just overwrote the changes made by
USER1! As a result, row with ID=10
contains new address but old phone
and fax numbers.

Let me show you how using ROWID can save USER2 from making this mistake.

USER1 USER2

1. Fetches row with ID=10. The | 1. Fetches row with ID=10. The
ROWID, say, ROWIDI is also fetched. ROWID (ROWID1) is also fetched.

Power Programming with SQLWindows

75

USER1

USER2

2. Changes phone and fax numbers
and updates row with ROWID =
ROWIDI1. Since USER2 has released
the shared lock, USERI1 is able to
acquire exclusive lock and also commit
the transaction. But since the row has
been modified, SQLBase changes the
ROWID to, say, ROWID2.

2. Changes the address for ID=10 and
ROWID = ROWID1 and tries to
update. It issues an UPDATE
statement to update the row with
ROWID = ROWIDI. But there is no
such row in the table and the update
operation fails!

Undoing (Discarding) Changes

If a user modifies an existing record or inserts information about a new record
after pressing the Insert push button, any changes made can be undone as long
as the user has not pressed the Update push button to commit the transaction.
Simply fetching the row again reverses any changes. To remember the row
number of the current row, I maintain a variable nRowNumber. pbFirst sets it to

0, pbLast to the number of rows in the result set,

and pbPrev and pbNext

decrement it and increment it respectively.

Pushbutton: pbUndo
Title: Undo
Message Actions

On SAM Click

If not bFormDirty and not SalIsNull{ dfId)
! Not an insert and no changes to fields

Call SalMessageBeep(0)
Call' ©-~"MagsageBox(

'No changes to this record. Nothing to undo.‘',
‘Error', MB_Ok | MB_IconExclamation)

76 Building a Database Application Chapter 3

Else
! Mark the form as not dirty (no changes yet)
Set bFormDirty = FALSE
! Now re-fetch the same row of the result set.
Call SqglFetchRow{ hSglSelect, nRowNumber, nFetchResult)
Call MessageBoxIfFetchError({ nFetchResult)
On SAM_Create
! Set the picture for the push button using the resource
Call SalPicSet(hWndItem, resUndo, PIC_FormatBitmap)

Listing3.13 The pbUndo push button.
Exiting from the Application

When a user wants to exit the application, he or she can choose Close from the
system menu, Exit from the File menu or simply press the Exit push button on
the toolbar. They all send or post a SAM_Close message to the form window. As
seen in Listing 3.4, the form window makes the decision based on whether the
user wants to lose any changes if there are any.

Pushbutton: pbExit
Title: Exit
Message Actions
On SAM Click
Call SalPostMsg(hWndForm, SAM Close, 0, 0)
On SAM_Create
! Set the picture for the push button using the resource
Call SalPicSet(hWndItem, resExit, PIC_FormatBitmap)

Listing 3.14 The pbExit push button.

Named Transactions

Normally, the scope of a transaction is all connections that an application makes to
a given database and user name. A transaction processing operation (such as
COMMIT, ROLLBACK, isolation level change, etc.) performed by one
transaction does not affect operations performed by other transactions.

Beginning with SQLWindows 5, named transactions let you modularize
transactions. For example, you can have:

e Multiple connections to the same database/user name pair that are in
different transactions.

Power Programming with SQLWindows 77

e Multiple applications in the same transaction. Named transactions used in
this way are called shared Sql Handles.

When you use named transactions with multiple applications, you save:
e The time to connect new Sql Handles.
e The memory overhead of maintaining many open Sql Handles.
You cannot use named transactions when you connect through ODBC.

Let me show you the functions to use with named transactions along with their
brief description.

SqlConnectTransaction

bOk = SglConnectTransaction(hSql, strTransactionName)

This function is like SqlConnect, except that you specify an additional parameter,
strTransactionName. The name you specify in strTransactionName associates the
connection with the transaction. You can give transactions any names that you
want. Transaction names are case sensitive.

When you connect Sql Handles with different transaction names, operations
(such as COMMIT or ROLLBACK) you perform for one transaction name do not
affect operations that you perform for another transaction name.

When you call SqlConnect, SQLWindows uses an implied transaction name that
is hidden.

SqlSharedSet
bOk = SglSharedSet(hSqgl)

This function makes a Sql Handle sharable. SqlSharedSet tells SQLWindows that
other applications can use this Sql Handle. You must have connected the Sql
Handle with SqglConnectTransaction. SqlSharedSet returns FALSE if the Sql
Handle is invalid or does not belong to a named transaction.

SqlSharedAcquire
bOk = SglSharedAcquire(hSqgl, strTransactionName)

Call this function to acquire and use a shared Sql Handle. The Sql Handle must
have been connected with SqlConnectTransaction and made sharable with

78 Building a Database Application Chapter 3

SqlSharedSet. The parameter strTransactionName must match what the owner
application specified when it called SqlConnectTransaction (the string is case
sensitive).

SqlSharedRelease

This function releases a shared Sql Handle.
bOk = SglSharedRelease(hSgl)

This function releases a shared Sql Handle. Call this function in a receiver
application when you are finished using the Sql Handle. This function does not
disconnect the Sql Handle. SqlSharedRelease returns FALSE if the Sql Handle is
invalid, does not belong to a named transaction, or was not made sharable with
SqlSharedSet.

4

Object-Oriented Programming

R

Do you sometimes wonder what object-oriented programming (O0P) is all
about? Do you often ask yourself where in your business applications you can
make use of OOP? In this chapter, I will answer both these questions. I will
choose some needs of a typical business application development environment
and illustrate how these needs could be met by using OOP. One reason I am
discussing OOP so early in the book is that I will use the concepts in later
chapters. Once you learn the concepts, you will begin thinking in terms of object-
orientation and often wonder how you have done programming without OOP so
far!

With SQLWindows, you don't have to choose between all or nothing. You can
start using OOP concepts in your existing applications. In new applications, you
can start implementing some OOP concepts initially and add more as time
permits and as you feel more comfortable.

Software 'Manufacture'

We all understand how a car is manufactured—there is a team of engineers with
a vision of what kind of car they want to build. This team carefully designs all
the parts and how they fit together. Several sub-teams then work on each of these
parts. These teams have complete freedom to use any materials and how to
actually manufacture these parts as long as they meet the specifications set by the
designers of the car. Finally, all these various parts are assembled together to
make the car. Since all these parts had been designed to work with each other, no
problems occur at the assembly line.

Could writing a software application be a similar process? Until very recently,
software development has been more of an art than science — mostly because of
the lack of tools and the lack of a mechanism that facilitates programming and
assembling various parts. Object-oriented programming is a way of writing

79

80 Object-Oriented Programming Chapter 4

software which takes us in that direction. Let us see how OOP takes us in the
direction of parts and assembly.

Class — Base Component of OOP

The “parts and assembly” way to manufacture software entails using classes, the
base components of object-oriented programming. A class is a piece of program
which hides the implementation details from the user of the class (an application
developer). The class provides a set of methods (such as functions) which the
application developer can invoke at the time of assembly (writing an
application). The application developer does not have to know how the class has
been implemented by the creator of the class. He or she only needs to know the
methods that provide an interface to this class. The application programmer can
potentially use several classes created by several different programmers. Some of
the classes may be created by in-house developers whereas others may be
purchased from third party vendors.

Designing Frequently Used Classes

One way to become an efficient programmer is to identify the pieces of programs
that you need often and create classes for them. You can then use these classes
during application development. I use OOP to design some handy classes.

Auto Entry Data Field Class—clsDfAutoEntry

As an example, let us define a data field class clsDfAutoEntry which monitors
every stroke of the key into that field and as soon as the maximum number of
characters (as defined using the customizer) have been typed into it, it moves the
focus to the next object in the defined tab order. For applications such as online
order entry, this greatly increases the efficiency of the sales person entering a
new order while talking with the customer on the phone. The sales person does
not have to press the TAB key after each field. This is useful when the fields are
of fixed size such as part numbers. While using this class, it is not important to
know how this class has been implemented but let’s look at some of the relevant
portions of the code:

Application Description: AUTOENTR.APL
Chapter 4
Object-Oriented Programming
Power Programming with SQLWindows
by Rajesh Lalwani.

Power Programming with SQLWindows 81

Copyright {(c) 1994 by Gupta Corporation.
All rights reserved.
Constants
User
! Define some Microsoft Windows constants
Number: WM_USER = 0x0400
Number: EM_SETSEL = WM_USER+1
Number: WM_NEXTDLGCTL = 0x0028
Class Definitions
Data Field Class: clsDfAutoEntry
List in Tool Palette? Yes
Description: This data field class will automatically
set focus to the next control in the
TAB order when it reaches its maximum
length as set in the customizer.
Instance Variables
Number: nMaxLength
Message Actions
On SAM Create
! Let us find out the length set in the customizer
and remember it in the instance variable nMaxLength.
Set nMaxLength = SalGetMaxDataLength{ hWndItem)
On SAM_AnyEdit
If SalStrLength(MyValue) = nMaxLength
! Send WM_NEXTDLGCTL to the form so that focus
will shift to the next control in the TAB order.
Call SalSendMsg(hWndForm, WM_NEXTDLGCTL, 0, O)
On SAM_SetFocus
! Select the entire contents of the data field by
sending EM_SETSEL message to the data field. lParam
has begin=0x0000 and end=0xFFFF.
Call SalSendMsg(hwWwndItem, EM_SETSEL, O, OxFFFF0000)

Listing 4.1 Auto Entry Data Field Class — clsDf AutoEntry.

Think of the above class definition as the blue print of a part. There are
specifications on the paper but no actual, physical part yet. An actual, physical
part which is constructed from the blue print is called an object or an instance of
the object class.

SalGetMaxDatalength

SalGetMaxDataLength returns the maximum length of a data field, multiline text
field, or table window column. You can use this function before assigning a

82 Object-Oriented Programming Chapter 4

value to any of these objects to ensure that the value fits. The return value is a
number that specifies the maximum length of the object. A length of DW_Default
(-1) indicates that the object was declared with a length of Default. In this case, |
call this function once, at the time the object is created, to get the maximum
length as defined in the customizer. I store this away in an instance variable
called nMaxLength so that there is no need to call SalGetMaxDataLength again.

Instance Variable—nMaxLength

Instance variables in a class are replicated for each object that you create. Each
object has its own private copy of an instance variable. While designing a form
window, if you place two data fields derived from clsDfAutoEntry, both these
data fields will have their own copy of nMaxLength. For one data field, its value
may be 4 while for the other data field, it may be 5.

SAM_AnyEdit

SAM_AnyEdit is sent to a combo box, data field, multiline text field, or table
window column whenever you make a change to that object's value. The object
receives a SAM_AnyEdit message on every key stroke. By processing
SAM_AnyEdit messages, an application can check an object's value as it changes.
I use this message to find out the number of characters entered so far by calling
SalStrLength.

SalStrLength and SalStrGetBufferLength

SalStrLength returns a string's length. Strings are stored internally in
SQLWindows with a null termination character. The null terminator is not
included in the length. This is slightly different from the behavior of
SalStrGetBufferLength. This function returns the current buffer length of a string.
SQLWindows stores string variables in buffers. The buffer length is used when
handling binary data and when calling functions defined in an external dynamic
link library (DLL). The buffer length is always larger than or equal to the the
string length.

MyValue

Note the use of MyValue in the above class definition. You can use this variable
in place of an object name in SAL statements within a class. It lets you set or
retrieve the window value of the current object from within a window class
where no object name is available. The serial number on a part corresponds to

Power Programming with SQLWindows 83

the window value of the push button in the above class definition. Since the
window value (serial number) of the instances (parts) derived (constructed) from
the clsDfAutoEntry class (blue print) is not available at designtime, MyValue
serves the purpose.

SAM_SetFocus

SAM _SetFocus is sent to a check box, combo box, data field, list box, multiline
text field, push button, radio button, scroll bar, or table window column when it
receives the input focus. You can process the SAM_SetFocus message and
initialize actions to take place when the user enters an object. You should avoid
calling functions that can change the focus (such as SalMessageBox, and
SalModalDialog) while processing a SAM_SetFocus message. In this case, when
the data field receives SAM_SetFocus, I send EM_SETSEL to the data field itself
so that the entire contents of the data field are selected and highlighted.

Listing a Data Field Class in the Tool Palette

By default the class clsDf AutoEntry would be listed in the tool palette when you
have selected the data field button. See Figure 4.1. If you want to list a class
derived from certain classes but not the intermediate classes, specify 'List in Tool
Palette' to be No in the Customizer for the intermediate classes.

84 Object-Oriented Programming Chapter 4

;%Hwﬁi

clsDfAutoEnt

Standard

|] |
8 =i

®R|XC

=] S Ve

MDI Window
Form { Dialog
Table { Quest

Figure 4.1 User-defined data field class is listed in the tool palette.
Data Field Class of Data Type Number—clsDfNumber

Let’s create another handy class. The standard data field in SQLWindows is
defined to be of the data type String. If you are like me, even when you want the
data field to be of the type Number, you often forget to change the data type;
resulting in some funny behavior later. To avoid this, you can define a data field
class called clsDfNumber. The data field class clsDfNumber defines the data type
to be Number.

Defining New Classes from Previously Defined Classes

This is one area where OOP can be better than the blue print and parts situation.
Let’s say, we have the blue print of a steering wheel but now we want a steering
wheel with an airbag. What are the options? One, we can create a new blue
print from scratch. Two, we can take the blue print of the steering wheel and
modify it to contain an air bag too. The second option is clearly better than the
first one because we can make use of the work done earlier. But is it the best?
Probably not; because, if later the engineers working on the design of the steering

Power Programming with SQLWindows 85

wheel (without an air bag) come up with a better design, these changes are not
automatically reflected in the design of the steering wheel with an air bag.
Fortunately, in software development, you can do better than that using the
inheritance feat'ire of OOP.

You can define a new class of data field, for example, clsDfCurrency from the
class clsDfNumber. clsDfCurrency is derived from clsDfNumber so it inherits all
of the properties including the data type (Number). In addition, it defines the
format of the data field to be of the type Currency. Now, if you change some
property of clsDfNumber, for example, background color, it is automatically
reflected in the clsDfCurrency class also!

In the previous example, since clsDfCurrency is derived from clsDfNumber,
clsDfNumber is called the base class or parent class of clsDfCurrency.

If you derive another class, for example, clsDf2, from clsDfAutoEntry and this
class also defines an instance variable with the same name nMaxLength, the
instance variable nMaxLength of clsDf2 hides the same of clsDfAutoEntry.
nMaxLength of clsAutoEntry is only hidden, you can still access it by qualifying
the name of the instance variable with the name of the base class -
clsDf AutoEntry.nMaxLength. Using nMaxLength alone will refer to the instance
variable of cIsDf2. To remove any ambiguity, you can always use
clsDf2.nMaxLength.

Deriving New Classes from Multiple Base Classes

Let’s define a new data field class called clsDfAutoEntryNumber. This class has
been derived from both clsDfAutoEntry and clsDfNumber defined earlier. This
class has the properties of both the classes from which it was derived: the data
type of the data field is Number instead of the default String and it automatically
sets focus to the next field defined in the TAB order when it reaches its maximum
length as set in the customizer. This is an example of multiple inheritance.

In case of multiple inheritance, if more than one base class defines or inherits the
same instance variable and if you refer to the instance variable, you get an error
during compilation. You can eliminate the ambiguity by qualifying the name of
the instance variable with the name of a class.

86 Object-Oriented Programming Chapter 4

Parts and Assembly Case Study—Browse Screen

I am sure every application developer has created screens to browse through
records. These screens display the first record and have push buttons which
users can use to go to the last, next, previous or first record. In this example,
have initially identified two 'parts' that we can pre-fabricate and use again and
again whenever such a browse screen is to be created. In SQLWindows, classes
can be either visual classes such as a push button class, a form window class, etc.
or non-visual classes called functional classes. For this particular case, I would
create one of each type: a functional class called clsSqlHandleSelect and a form
window class called clsFrmBrowse.

Designing Parts

The first class is a functional class called clsSqlHandleSelect which essentially
defines a sql handle (cursor) for connection to the database. When I began
designing this class, I realized it may be more useful for the future to split the
functionality in two classes instead: clsSqlHandle and clsSqlHandleSelect which
is derived from clsSqlHandle. The basic idea is that clsSqlHandle will provide
the functionality needed by all SQL statements not just SELECT.
clsSqlHandleSelect will then inherit all this functionality and add new features to
address the needs of a SELECT statement such as going to the first, next record
etc. It is important, however, not to get carried away with the idea of designing
generalized classes. You may end up with too many classes that are never used
in the future. Also, you have to strike a balance between looking at future versus
finishing the current project on time.

Sql Handle Class—clsSqlHandle

clsSqlHandle defines following instance variables: Sql Handle: sqlHandle, String:
strSQLStatement, Boolean: bConnected. clsSqlHandle provides the following
member functions:

InitializeClass: It initializes the class variables strSqlDatabase, strSqlUser, and
strSqlPassword. It is assumed that the application connects to one database only.
SQLWindows has a concept of class variables. These variables are associated
with the class which defines them and are accessible to all the classes that are
derived from this class or instances of such classes. They are different from
instance variables in that they are shared by all instances — when one instance

Power Programming with SQLWindows 87

changes a class variable, other instances see this new value. In case of instance
variables, each instance gets its own copy of the instance variable. Since it was
assumed that the application would only connect to one database, it made sense
to define the database name, user name and password as class variables so if
clsSqlHandle is used more than once, it's not necessary to initialize these
variables again.

Application Description: SQLHANDL.APL
Chapter 4
Object-Oriented Programming
Power Programming with SQLWindows
by Rajesh Lalwani.
Copyright (c) 1994 by Gupta Corporation.
All rights reserved.
Class definitions for clsSglHandle and clsSglHandleSelect.
Class Definitions
Functional Class: clsSqlHandle
Description: This is the base class for all sql Handle
classes. Its InitializeClass() member function should be
called to initialize the database name, user name, and
password. It is assumed that the application connects to
one database only.
Class Variables
! Class variables for database, user name, and password.
String: strSqlDatabase
String: strSqglUser
String: strSqglPassword
Instance Variables
1 variables that each instance derived from this class would
get.
Sqgl Handle: sglHandle
String: strSQLStatement
Boolean: bConnected
Functions
Function: InitializeClass
Description: This function should be called once
per application. It initializes the class variables
strSqlDatabase, strSqlUser, and strSqlPassword.
Parameters
String: strSglDatabaseParm
String: strSglUserParm
String: strSglPasswordParm
Actions
! Set the values of the class variables.

88 Object-Oriented Programming Chapter 4

Set strSqglDatabase = strSglDatabaseParm
Set strSqlUser = strSglUserParm
Set strSqglPassword = strSglPasswordParm
Function: Initialize
Description: This function should be called once per
instance to initialize the SQL statement. It is assumed
that the InitializeClass function has been called before.

Parameters
String: strSQLStatementParm
Actions

! Set the value of the instance variable for remembering
! the SQL statement.
Set strSQLStatement = strSQLStatementParm
Function: Error
Description: This function displays the error text
in a message box. A class derived from clsSqlHandle
can override this function by defining its own Error
function.
Parameters
String: strMessage
Actions
Call SalMessageBox(strMessage, 'clsSglHandle.Error',
MB_Ok | MB_IconStop)
Function: Connect
Description: This function calls SglConnect.
It uses the class variables to set the system variables
SqglDatabase, SglUser and SglPassword. It returns TRUE
if SglConnect was successful, FALSE otherwise.
Returns
Boolean:
Local variables
String: strSglDatabaseTemp
String: strSglUserTemp
String: strSglPasswordTemp
Actions
! Remember the old values of the system variables
Set strSqlDatabaseTemp = SglDatabase
Set strSqlUserTemp = SglUser
Set strSglPasswordTemp = SglPassword
! Set the values of the system variables using
! the class variables.
Set SqglDatabase = strSqglDatabase
Set SglUser = strSqlUser
Set SglPassword = strSglPassword
! Define a local error handler in case of a SQL error.

Power Programming with SQLWindows 89

When SqlError
! Call the Error function in a late-bound fashion so

that if another Error function has been defined down
the inheritance chain, that function would be called

instead.
Call ..Error('Could not SglConnect on Database : '
|| strsSqlDatabase || ' for User : ‘ || strSqlUser)

| Return FALSE so that the SQL function would return

FALSE to its caller.
Return FALSE

! Ccall SglConnect
Set bConnected = SglConnect{ sglHandle }
| Reset the values of the system variables using the temp

variables.
Set SglDatabase = strSglDatabaseTemp
Set SglUser = strSglUserTemp
Set SglPassword = strSglPasswordTemp
! Return the success/failure of the operation

Return bConnected
Function: SetIsolationLevel
Description: This function can be used to set
isolation level for all cursors of the application.
Read Repeatability is the default setting for SQLWindows.

Returns
Boolean:
Parameters

String: strIsolation

Actions
Return SqlSetIsolationLevel(sqlHandle, strIsolation)

Function: Prepare
Description: This function prepares the SQL statement.
Returns

Boolean:
Local variables
Boolean: bPrepared
Actions

If bConnected

When SglError
1 call the Error function in a late-bound fashion so

that if another Error function has been defined down
the inheritance chain, that function would be called
instead.
call ..Error {'Could not prepare: ' || strSQLStatement)
! Return FALSE so that the SQL function would return

FALSE to its caller.

90 Object-Oriented Programming Chapter 4

Return FALSE :
Set bPrepared = SqglPrepare | sqlHandle, strSQLStatement)
Else :
Set bPrepared = FALSE
Return bPrepared
Function: Execute
Description: This function is called to execute the SQL
statement which has been prepared earlier by calllng
Prepare function.
Returns
Boolean:
Local variables
Boolean: bExecuted
Actions
When SglError
! Call the Error function in a late-bound fashion so
that if another Error function has been defined down
the inheritance chain, that function would be called
instead. .
Call ..Error('Could not execute: * || strsgQLStatement)
! Return FALSE so that the SQL function would return
FALSE to its caller.
Return FALSE ;
Set bExecuted = SglExecute(sqlHandle)
Return bExecuted :
Function: Commit » i
Description: This function is called to commit the
transaction.
Returns
Boolean:
Local variables
Boolean: bCommited
Actions
When SglError
! Call the Error function in a late-bound fashion so
that if another Error function has been defined down
the inheritance chain, that function would be called
instead.
Call ..Error{'Could not commit: °* || strsQLStatement)
! Return FALSE so that the SQL function would return
FALSE to its caller.
Return FALSE
Set bCommited = SqlCommit(sqlHandle)
Return bCommited

Power Programming with SQLWindows 91

Function: Disconnect
Description: If the Sql Handle is connected, it is
disconnected it by calling SglDisconnect.
Returns
Boolean:
Actions
I1f bConnected .
When SqglError
! call the Error function in a late-bound fashion so
that if another Error function has been defined down
the inheritance chain, that function would be called

instead.
Call ..Error
{ 'Could not disconnect: ' || strSglDatabase)

! Return FALSE so that the SQL function would return
FALSE to its caller.

Return FALSE

Set bConnected = not SglDisconnect{ sqlHandle)
Return not bConnected
Else

! The Sgl Handle was never connected.

Return TRUE

Listing 4.2 Sql Handle class clsSqlHandle.

Initialize: This function should be called once per instance to initialize the SQL
statement. In this example, I call this function with the exact SELECT statement
when I design a browse screen from clsFrmBrowse.

Error: This function displays the error text in a message box. A class or an
instance derived from clsSqlHandle can override this function by defining its
own Error function. If another Error function is defined by the class or instance
derived from clsSqlHandle, that function is called instead because within
cIsSqlHandle, Error is called in a late bound fashion indicated by two periods
before the function name: Call ..Error(). In case of a late bound call, a check is
made at runtime to see which Error function is to be used. This provides some
flexibility to the users of the class. On the other hand, late bound calls are more
expensive. That is why, SAL has chosen early binding as the default. Late
binding is also known as dynamic binding. As you will see shortly,
clsFrmBrowse, indeed, defines its own Error function which overrides the Error
function defined by clsSqlHandle. This is indicated by strikethrough style in
Figure 4.3.

92 Object-Oriented Programming Chapter 4

Connect: This function calls SqlConnect. It uses the class variables to set the
system variables SqlDatabase, SqlUser, and SqlPassword. Note the use of a local
error handler — When SqlError statement.

Local Error Processing—When SqlError Statement

When you call a SQL function and it fails (returns FALSE), an error message is
sent to the application. Normally, this initiates default error processing.
SQLWindows lets you control the way errors are handled. You can add a When
SqlError statement to any code section (for example, an object's Message Actions
section). The way in which an error is handled is part of the error processing
hierarchy. SQLWindows starts from the inside of your program and works
outward; that is, it starts the error process from a local section (where the error
occurred) and works outward to the global sections. A When SqlError statement
must precede any SQL statements that you want handled locally in the case of an
error. Also, the When SqlError statement must be at the same level in the
application outline as the SQL statement which produced the error.

SetlsolationLevel. This function is called to set isolation level for all cursors of the
application. Read Repeatability is the default setting for SQLBase.

Prepare: This function prepares the SQL statement.

Execute: This function is called to execute the SQL statement which has been
prepared earlier by calling Prepare function. Later, you will see that
clsSqlHandleSelect overrides this function by defining its own Execute function.
Again, this is indicated by strikethrough style in Figure 4.3. Actually,
clsSqlHandleSelect extends this function by calling Execute of clsSqlHandle first.

Commit: This function calls SqlCommit to commit the transaction.

Disconnect: 1f the Sql Handle is connected, it is disconnected by calling
SqlDisconnect.

Sql Handle Class for SELECT statements—clsSqlHandleSelect

clsSqlHandleSelect ~defines one additional instance variable Number:
nResultSetCount to keep track of the total number of rows in the result set. This
is used by a member function - Last. clsSqlHandleSelect provides the following
member functions:

Power Programming with SQLWindows 93

Execute: This function is called to execute the SELECT statement which has been
prepared earlier by calling Prepare function. This function overrides (actually
extends) the Execute function defined in the base class clsSqlHandle. It first calls
the Execute function of the clsSqlHandle class to execute the SELECT statement
by qualifying the function name with the class name ~ clsSqlHandle.Execute. It
then calls SqlGetResultSetCount to set the value of nResultSetCount — instance
variable of clsSqlHandleSelect.

SqlGetResultSetCount counts the rows in a result set by building the result set.
Servers such as SQLBase provide the number of rows in the result set without
actually fetching each row. But for some databases, calling SqlGetResultSetCount
can be a time-consuming operation. You can choose to initialize the instance
variable nResultSetCount only when the member function Last is called the first
time.

MessageBoxIfFetchError. This function displays a message box in case First, Next,
Previous, Last, FetchRow functions return FETCH_EOF, FETCH_Delete, or
FETCH_Update. FETCH_EOF is sent in two cases: 1) when the user is at the last
record and tries to go to a next record; 2) when the user is at the first record and
attempts to go to a previous record.

SQLWindows does not distinguish among its member functions like the way
C++ does; C++ has public, private, and protected member functions in a class. If
SQLWindows did distinguish, I would have declared MessageBoxIfFetchError as
a private function to be available only within this class definition. I use this
function only locally to process the fetch return code and display an appropriate
message.

Functional Class: clsSqlHandleSelect
Description: This class is derived from clsSglHandle.
This class can be used to define a SglHandle which is
going to be used to do a SELECT and browse (First record,
Last record, Next record, Previous record,specific record)
through the result set. The instance can define the specific
SELECT statement by calling the Initialize() function.
Derived From
Class: clsSqglHandle
Instance Variables
! It has an additional instance variable to remember the
number of rows in the result set created by the SELECT.
Number : nResultSetCount

94 Object-Oriented Programming Chapter 4

Functions
Function: Execute
Description: This function is called to execute the
SELECT statement which has been prepared earlier by
calling Prepare function. This function overrides
(actually extends) the Execute function defined in the
base class clsSglHandle.
Returns
Boolean:
Local variables
Boolean: bSuccess
Actions :
! First call the Execute function of the base class
clsSglHandle.
Set bSuccess = clsSqglHandle.Execute(}
If bSuccess
When SglError
! Call the Error function in a late-bound fashion so
that if another Error function has been defined down
the inheritance chain, that function would be called

instead.
Call ..Error('Could not get result set count for:
|| strsQLStatement)

Set nResultSetCount = 0
! Return FALSE so that the SQL function would return
FALSE to its caller.
Return FALSE
Set bSuccess = SglGetResultSetCount(sglHandle,
nResultSetCount)
Return bSuccess
Function: MessageBoxIfFetchError
Description: This function displays a message box
in case First, Next, Previous, Last return FETCH_EOF,
FETCH_Delete, or FETCH Update. :
Returns
Boolean:
Parameters
Number: nInd
Local variables
String: strMessage
Actions
Select Case nInd
Case FETCH_EOF
Set strMessage = 'Reached the end.'
Break

Power Programming with SQLWindows 95

Case FETCH_Update :
Set strMessage = 'The record has been updated.'
Break

Case FETCH_Delete
Set strMessage = 'The record has been deleted.’
Break

Default
Return TRUE

call SalMessageBeep{ 0)

Call SalMessageBox(strMessage, 'FETCH Information', MB_Ok)

Return FALSE
Function: First

Description: This function is used to go to the

first row in the result set.

Returns

Boolean:

Parameters

Receive Number: nInd

Actions

Return FetchRow(0, nInd)
Function: Next

Description: This function is used to fetch the

next row in the result set. This function or First

must be called immediately after Execute to position to

the first row.

Returns

Boolean:

Parameters

Receive Number: nInd
Local variables

Boolean: bSuccess
Actions

Set bSuccess = FALSE

When SglError

! Call the Error function in a late-bound fashion.

Call ..Error{'Cannot Fetch Next Record')

! Return FALSE so that the SQL function would return
. FALSE to 1its caller.

Return FALSE

Set bSuccess = SqglFetchNext{ sqglHandle, niInd)}

Call MessageBoxIfFetchError{ nInd)
Return bSuccess
Function: Previous
Description: This function is used to fetch the
previous row in the result set.

96 Object-Oriented Programming Chapter 4

Returns
Boolean:
Parameters
Receive Number: nInd
Local variables
Boolean: bSuccess
Actions
Set bSuccess = FALSE
When SqlError
! Call the Error function in a late-bound fashion.
Call ..Error{‘Cannot Fetch Previous Record')
! Return FALSE so that the SQL function would return
FALSE to its caller.
Return FALSE
Set bSuccess = SqglFetchPrevious{ sqglHandle, nInd)
Call MessageBoxIfFetchError{(nInd)
Return bSuccess
Function: Last
Description: This function is used to go to the
last row in the result set.
Returns
Boolean:
Parameters
Receive Number: nInd
Actions
! O-based row number
Return FetchRow(nResultSetCount-1, nInd)
Function: FetchRow
Description: This function is used to fetch a
specific row in the result set.
Returns
Boolean:
Parameters
Number: nRowParm
Receive Number: nInd
Local variables
Boolean: bSuccess
Actions
Set bSuccess = FALSE
When SqlError
! Call the Error function in a late-bound fashion.
Call ..Error{'Cannot Fetch Record# ' ||
SalNumberToStrX(nRowParm, 0))
! Return FALSE so that the SQL function would return
FALSE to its caller.

Power Programming with SQLWindows 97

Return FALSE

Set bSuccess = SglFetchRow(sglHandle, nRowParm, nInd)
Call MessageBoxIfFetchError(nInd)

Return bSuccess

Listing 4.3 Sql Handle Class for SELECT statements — clsSqlHandleSelect.

First, Previous, Next, Last: These functions are used to go to the first, previous,
next, and last rows in the result set. Last makes use of the instance variable
nResultSetCount.

FetchRow: This function is used to fetch a specific row in the result set. This
function is used by member functions First and Last. SalNumberToStrX converts
a number to a string. The second parameter specifies the number of decimal
places you want.

Form Window Class for Browse Screens—clsFrmBrowse

clsFrmBrowse is a Form Window class. It is different from the previous two
classes in the sense that it is a visual class. Even though it is a visual class,
SQLWindows lets you derive it from a non-visual (functional) class.
clsFrmBrowse is derived from clsSqlHandleSelect so it inherits all the methods
and instance variables of clsSqlHandleSelect. Figure 4.2 shows the template for
clsFrmBrowse as seen through SQLWindows Class Editor.

In this case, I have chosen to derive clsFrmBrowse from clsSqlHandleSelect.
Alternately, 1 could define an instance variable, for example, sqlHandleSelect
derived from clsSqlHandleSelect. This is the only option if I need more than one
instance of clsSqlHandleSelect.

I have chosen to directly inherit from clsSqlHandleSelect because all the variables
and member functions of clsSqlHandleSelect become directly available to
clsFrmBrowse and any class or screen derived from it. Figure 4.3 shows the three
classes designed thus far.

98 Object-Oriented Programming Chapter 4

Figure 4.2 clsFrmBrowse as seen through SQLWindows Class Editor.

This Form Window class provides a template for creating browse screens with
push buttons for going to the first, previous, next, and last records. When you
design a screen based on this class, call Initialize on SAM_Create to initialize the
SQL SELECT statement. Note that clsFrmBrowse does not define its own
Initialize function - it inherits it from clsSqlHandleSelect which in turn had
inherited it from clsSqlHandle.

clsFrmBrowse defines some push buttons as the contents of the toolbar and puts
necessary code for SAM_Click event for them. For example, for pbFirst, it calls
First function which was defined by clsSqlHandleSelect.

Since it is assumed that the screen derived from this class would have called
Initialize for SAM_Create, this class uses SAM_CreateComplete to call Connect,
Prepare, Execute, and Next member functions to connect to the database, prepare
and execute the SELECT statement, and fetch the first record of the result set.

SQLWindows sends SAM_CreateComplete message to windows with contents
(top-level windows, child table windows, and child QuestWindows) after
creating the window's children and displaying the window and its children.

Finally, the pbExit push button posts a SAM_Close message to the hWndForm.
Since we do not know the window handle name or the name of the screen which
will be derived from this Form Window class, the reserved word hWndForm
would provide us the window handle of the screen at runtime.

Power Programming with SQLWindows 99

hWndForm
This variable takes one of two values:

e When actions are executing from an application's Application Actions
section, hWndForm is NULL.

e When actions are executing from a window's Message Actions section,
hWndForm is the window handle of the current top level window. This top
level window can be a form window, table window, or dialog box to which
the current message is sent. The only exception is when the window is a
child table window column; in this case, hWndForm is the child table
window.

SAM_Destroy

In response to SAM_Destroy, clsFrmBrowse calls member function Disconnect to
disconnect from the database.

SAM_Destroy is sent to a top-level window (dialog box, form window, or table
window) and then to all of its children just before the windows are destroyed.
SAM_Destroy messages are sent after SAM_Close has been sent to the top-level
window. For example, if a form window has data fields, SQLWindows sends the
messages to the objects in this order:

1. SAM_Close to the form window.
2. SAM_Destroy to the form window.
3. SAM_Destroy to each of the form window's child windows.

After all of the SAM_Destroy messages are sent, the top-level and child windows
are destroyed. It is also sent to an MDI window.

Application Description: FRMBROWSE.APL

Chapter 4

Object-Oriented Programming

Power Programming with SQLWindows

by Rajesh Lalwani.

Copyright (c) 1994 by Gupta Corporation.

All rights reserved.

This APL defines a Form Window class clsFrmBrowse.
Libraries

File Include: SQLHANDL.APL

100 Object-Oriented Programming Chapter 4

Global Declarations
Class Definitions
Form Window Class: clsFrmBrowse
Title: Browse
Description:
This class is a Form Window class to provide a template for
creating browse screens with push buttons for going to
first, previous, next and last records. Call Initialize()
on SAM Create to initialize the SQL SELECT statement.
Derived From
Class: clsSglHandleSelect
Contents
Pushbutton: pbFirst
Title: First
Picture File Name: FIRST.BMP
Picture Transparent Color: Gray
Message Actions
On SAM Click
Call First{ nInd)
Pushbutton: pbPrevious
Title: Prev
Picture File Name: PREV.BMP
Picture Transparent Color: Gray
Message Actions
On SAM_Click
Call Previous{ nInd)
Pushbutton: pbNext
Title: Next
Picture File Name: NEXT.BMP
Picture Transparent Color: Gray
Message Actions
Oon SAM Click
Call Next{ nInd)
Pushbutton: pbLast
Title: Last
Picture File Name: LAST.BMP
Picture Transparent Color: Gray
Message Actions
Oon SAM Click
Call Last(nInd)
Pushbutton: pbExit
Title: Exit
Picture File Name: EXIT.BMP
Picture Transparent Color: Gray

Power Programming with SQLWindows 101

Message Actions
On SAM Click
Call SalPostMsg(hWndForm, SAM _Close, 0, 0)
Instance Variables
! To store the return indicator of fetch functions.
Not intended as an instance variable. Only a work around
because could not declare local variables for push
buttons.
Number: nInd
Functions
Function: Error
Description: This function overrides the function Error of
clsSqglHandle. This function gets the error number of
the last error, error text, cause and remedy.
Parameters
String: strMessage
Local variables
Number: nError
Actions
! Get the most recent SQL error for the sglHandle
Set nError = SqlError{ sqglHandle)
! Show the modal dialog box to display the error, cause and
remedy .
Call SalModalDialog{ dlgSglError, hWndForm , nError,
strMessage)
Message Actions
On SAM_CreateComplete
! Display the first record
If not (Connect() and
SetIsolationLevel('RL') and
Prepare() and
Execute() and
Next{ nInd))
Call SalPostMsg{ hWndForm, SAM Close, 0, 0)
On SAM_Destroy
Call Disconnect()

Listing 4.4 Form Window class for browse screens—clsFrmBrowse.

Notice the use of 'Picture Transparent Color' for the push buttons on the toolbar.
If you set this attribute using the customizer for the push button, the push
button’s background color replaces the color you select wherever it appears in an
image. This applies to bitmaps only (*.BMP). For example, if the push button has

102 Object-Oriented Programming Chapter 4

a white background and you have specified gray as the picture transparent color
using the customizer, gray color in the BMP will be replaced by white.

Error: clsFrmBrowse overrides the Error function which it inherited from
clsSqlHandleSelect which, in turn, had inherited it from clsSqlHandle. This new
Error function provides a lot more information in case of an error—it provides
the message generated by the class, error text, reason, and the remedy on a
dialog box dlgSqlError discussed earlier in Chapter 3.

Class: Class: Class:
clsSglHandle clsSglHandleSelect clsFrmBrowse
Class Variables: Class Variables: Class Variables:
String:

strSglDatabase

String: strSqglUser

String:
strSglPassword

Instance Instance Variables: Instance

Variables: Variables:
Number :

Boolean: nResultSetCount Number: nInd
bConnected

Sgl Handle:
sglHandle

String:
strSQLStatement

Power Programming with SQLWindows 103

Class: Class: Class:
clsSqglHandle clsSglHandleSelect clsFrmBrowse
Methods: Methods: Methods:
InitializeClass Execute Error
Initialize MessageBoxIfFetchError
Brrer Next SAM_CreateComplete
Connect Previous SAM_Destroy
SetIsolationLevel FetchRow
Prepare First
Exeeute Last
Commit
Disconnect

Figure 4.3 clsFrmBrowse is derived from clsSqlHandleSelect which, in turn,

is derived from clsSqlHandle. Strikethrough style indicates that
the method has been overridden by a derived class.

Assembly Line

Once we have designed these 'parts’, designing an actual screen is very easy.
When you want to create a new form, the outline options bar now displays
clsFrmBrowse in addition to Form Window in the choices. If you choose
clsFrmBrowse, you create a new form (screen) which is derived from
clsFrmBrowse. Let’s call it frmBrowseGuest. frmBrowseGuest would be an
instance of the class clsFrmBrowse. You can place data fields and background
text on frmBrowseGuest as usual.

Application Description: OOP.APP
Chapter 4
Object-Oriented Programming
Power Programming with SQLWindows
by Rajesh Lalwani.
Copyright {(c) 1994 by Gupta Corporation.
All rights reserved.
This application displays a screen to browse all
the guests in the GUEST table of the GUPTA database.

104 Object-Oriented Programming Chapter 4

Libraries
File Include: FRMBROWS.APL
File Include: SQLHANDL.APL
Form Window: frmBrowseGuest
Class: clsFrmBrowse
Title: Browse Records of GUEST Table of GUPTA Database
Description: This form window is an instance of clsFrmBrowse.
Menu
Menu Item: About!
Menu Actions
Call SalModalDialog(dlgAbout, hwndForm)
Contents
Background Text: Name:
Data Field: dfName
Background Text: Room Name:
Data Field: dfRoomName
Background Text: Trainer:
Data Field: dfTrainer
Background Text: In Weight:
Data Field: dfInWeight
Background Text: Target Weight:
Data Field: dfTargetWeight
' Message Actions
On SAM Create
Call frmBrowseGuest.InitializeClass
('SPA', 'SYSADM', 'SYSADM')}
Call frmBrowseGuest.Initialize
“{ "SELECT NAME, ROOM_NAME, TRAINER, IN _WEIGHT, TARGET | WEIGHT
INTO :dfName, :dfRoomName, :dfTrainer, :dfInWeight,
:dfTargetWeight FROM GUEST' }

Listing 4.5 Deriving a Screen (Form Window) from clsFrmBrowse.

That's all you need to do. You now have a fully functional application which
brings up a screen to display records from GUEST table of GUPTA database. It
has a toolbar with push buttons for browsing and an Exit button to exit from this
screen. Figure 4.4 shows the screen when this application is run. Notice the title
of this screen. Compare it with the title as seen in Figure 4.2. I have chosen to
override the title defined in the class clsFrmBrowse.

Power Programming with SQLWindows 105

%%;E Browse Records of GUEST Table of GUPTA Database [y

Name: IHEATHERFSTARLETTE |

Room Name: | TURQUOISE RM |

 Trainer: [SERENA

* In Weight: | 180

Target Weight: | 155

‘._.L—_

Figure 4.4 An actual screen derived from clsFrmBrowse.

Late Binding versus Early Binding

Let me now show you how using late binding for calling Error function differs
from using early binding. Let’s assume that I made a mistake while designing
frmBrowseGuest—instead of making the datafield dfName of data type String, I
made it a datafield of data type Number. When I run this application, the dialog
box as shown in Figure 4.5 comes up explaining the message, error text, reason,
and the remedy in multi-line text fields. So even though clsSqlHandle defines
Error function to display a simple message box, when clsSqlHandleSelect.Next
calls ..Error, the Error function defined by clsFrmBrowse is called instead.

106 Object-Oriented Programming Chapter 4

Attempt to fetch non-numeric data

{ Cannot Fetch Next Record|
: into numeric column

medy:

Remedy: Modify the program or

data so that non-numeric data is not
attempted to be

fetched into a numeric format.

Reason: One of the application's
1sqlssb function calls set up a fetch
: buffer that is defined as
{numeric but the data that was fetched
: cannot be converted to a
{numeric value.

Figure 4.5 Dialog box to indicate the error message, error text, reason and
remedy in case dfName was declared of data type Number
instead of String.

Had clsFrmBrowse chosen not to write its own Error function, the late bound call
..Error would have essentially been the same as an early bound call and the
message box as shown in Figure 4.6 would be displayed. Notice the difference in
the titles of the dialog box and the message box.

clsSqiHandle Error

@ Cannot Fetch Next Record

Figure 4.6 Message box to indicate the error message in case dfName was
declared of data type Number instead of String.

Power Programming with SQLWindows 107

Corporate Standards for User Interface

One place where corporate MIS departments use OOP is in enforcing corporate
standards, particulary in user interface. One such example would be to define a
form window class clsWndCorporate which has a standard background color
(for example, yellow), corporate logo, and a standard set of push buttons on the
toolbar. See Figure 4.7 for clsWndCorporate. All the screens developed by the
MIS department are derived from this and hence have the same look and feel.

ey ciswndCorporate =]-1-]
L’j K | ¢ » M g~

First: Prev { Next | Last Exit

Figure 4.7 clsWndCorporate as a standard for all screens.

Another place where OOP can be used in enforcing corporate standards is to
provide a library of data field classes for specific purposes. A non-editable (read-
only) data field class may have a yellow background so that whenever an end
user sees a yellow datafield on the screen, he or she immediately knows that it is
a read-only data field. Similar color coding schemes can be developed for string
versus numeric data fields.

Easy Maintenance of Code

It is a very good idea to always have a base class for every visual object used in
an application, even if the base class is the same as the default SQLWindows
class. Later, it is very easy to ripple the changes through all the objects by making
a change in the base class alone. Let’s assume that all the form windows were
derived from clsFrmCorpBase. When the application was first written, security
may not have been an issue. At some point you may want, for security reasons,

108 Object-Oriented Programming Chapter 4

to monitor the keyboard activity for each screen and destroy the screen if there
has not been any activity for past 20 minutes. Since all the screens were derived
from clsFrmCorpBase, it is easy to incorporate this functionality in the class itself.
All the screens get this security feature for free!

Hiding Implementation Details

A class is essentially a unit which contains some data (variables) and some
methods (functions, event handlers). In a true object oriented environment, the
data should be completely hidden from the outside world. The outside world can
manipulate this data through the use of the methods provided by the object. The
internal details are hidden. This makes it very easy to change the implementation
of the methods as long as the interface remains the same.

5
MDI Windows

|
About MDI Windows

Have you ever written or used applications where you needed to display several
screens at a time? Did you wish there was a way to manage them so that you
could tile them or minimiz<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>